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Abstract— Learning from previous incidents is essential for 

preventing future incidents and taking the necessary 

precautions. We analyze construction site incidents by 

employing data science process and machine learning 

algorithms such as decision trees and Apriori. Patterns that are 

extracted using machine learning algorithms provides 

interesting insights on the causes of incidents and their relations 

with other factors. The dataset we use is a novel dataset 

containing hundreds of construction site incidents between 2014 

and 2020 from an international construction company. The data 

consist of a wide range of features such as activity during 

incident, incident condition, hazard source, incident severity, 

location, and time. The decision tree is used in a descriptive 

analytics setting to extract patterns in our dataset. Additionally, 

the Apriori algorithm is employed to extract patterns in the 

form of frequent itemsets and association rules. The patterns we 

extract using machine learning algorithms shed light on 

associations between different factors and different types of 

incidents. One of the interesting results of our study is that the 

patterns extracted from a supervised classifier in a descriptive 

analytics setting collides with the patterns extracted using the 

unsupervised machine learning algorithm of Apriori. The 

generated rules can be used for informing the health and safety 

experts by developing a decision support mechanism for taking 

necessary precautions for minimizing the risk of different types 

of incidents. 
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I. INTRODUCTION AND BACKGROUND 

The safety and health of the workers at the construction 
sites is a major health concern. Even though there are many 
technological developments in the construction sector, it is 
largely a manual and labor-intensive process. This makes it 
prone to incidents mainly from human error [1]. By recording 
past incidents accurately and in detail, it is possible to analyze 
the data and learn from past accidents [2].   

The construction industry is a high-risk sector. The 
regulations stated by the health and safety regulators can be 
ignored in many different construction locations [3]. In a study 
conducted in Kuwait, it is revealed that there is a significant 
lack of information in the recorded construction site accidents 
[4]. Statistical studies provide many different informative 
results that can be utilized for preventing these accidents. A 
survey argues that the main causes of these accidents are lack 

of safety knowledge and negligence of the workers such as not 
following safety rules or fail to use personal protective 
equipment [5]. Additionally, unskilled worker employment, 
and poor site management are also listed as important factors. 
In another study, eight causes of construction site accidents 
are identified, such as failure to enforce safety measures, lack 
of necessary training, and contractors that neglect to fulfill 
safety requirements [6]. It is important to prevent future 
accidents by taking precautions based on detailed analysis of 
the historical data and make predictions to regulate safety 
settings and may be raise alarms if certain conditions are 
encountered.  

In the literature, several studies utilize machine learning 
models for predicting incidents that may occur in a 
construction project. Several construction incidents between 
the years 2011 and 2016 are analyzed in [7]. The dataset 
consists of 140.169 incident victims. Logistic regression (LR), 
decision tree (DT), random forest (RF), and AdaBoost models 
are used to predict the likelihood of mortality of workers by 
analyzing injury and death data from previous fatal accidents. 
Among these models, RF performs best in terms of prediction 
accuracy. Another study utilized 2.8 million accidents that 
have occurred in Japan over twelve years period and trained a 
LR model [8]. In [9], RF and stochastic gradient tree boosting 
(SGTB) models are utilized to predict injury type, energy 
hazard source type, and injured body type. The constructed 
models perform successfully in terms of rank probability skill 
score and outperform parametric models that are found in the 
literature [10]. Another study focuses on high-risk accidents 
in the construction industry. They use a dataset that is 
collected between 2007 and 2011 [11]. They use several 
machine learning models including decision tree, and 
association rule mining. Findings show that there are 
significant correlations between time of accident, location of 
the accident, body part affected, final consequence of 
accident, and lost workdays. One of the interesting results they 
find is that the frequency of accidents during night shifts is 
smaller compared to other shifts. However, during the night 
shifts, injuries to the head, back, spine, and limbs occur more 
frequently compared to other shifts. These and many other 
findings are consistent with the previous studies in the 
literature [12] - [14]. A different study aims to identify 
workers who are at risk of an accident that can result in severe 
consequences and classify these workers to determine 
adequate control measures [15]. Their results provide a 



guideline for more efficient safety strategies, occupational 
accident prevention, and programs for emergency scenarios. 

We analyze construction site incidents using decision tree 
classifier and association rule mining, the Apriori algorithm. 
Frequent itemsets and association rules are mined to get 
insight into the causes of a given incident type. Several sets of 
rules are extracted for the most frequent incident types to 
determine hidden patterns and associations between different 
factors affecting different types of incidents. The mined 
patterns can be used for informing the health and safety 
experts (HSEs) by developing a decision support mechanism 
for taking necessary precautions to minimize the risk of 
different types of incidents. 

In the following section a brief description for the machine 
learning models is presented. Afterwards, in section 3, the 
properties of the used dataset and the preprocessing steps are 
explained. The experiment results are provided in section 4, 
along with the discussion of the results. Our paper is 
concluded with section 4, including outlook for the future 
work. 

II. APPROACH 

Association rule mining (ARM) analysis is mainly 
conducted for the identification of significant associations 
between items and patterns that occur frequently, in a large 
dataset. Apriori algorithm is one of the most common and 
frequently used methods for association rule mining analysis. 
In the Apriori algorithm, all itemsets that occur above a certain 
threshold, namely minimum support, are efficiently generated 
[16]. After these itemsets are generated, based on a second 
threshold, which can be either the confidence or the lift values, 
association rules are formed. Confidence is defined as the 
likelihood of a consequent, occurring based on a given 
antecedent. Lift value is the increase of the probability of a 
consequent occurring, given a certain antecedent. The 
“mlxtend” package available in Python can be used for 
association rules analysis [17]. The Apriori function in this 
package supports one-hot-encoded data frames. Since our 
dataset consist of nominal features and their values, we first 
convert our dataset into a one-hot encoded format in which 
each nominal feature value is represented as a column taking 
0 or 1 based on the occurrence in a specific incident instance 
or row.  From this aspect each column, representing a nominal 
feature value, corresponds to an item. On the other hand, non-
zero values in each row or instance can be considered as an 
itemset. 

Decision trees are one of the most popular classification 
algorithms in machine learning [18]. This algorithm can also 
be used in a descriptive analytics setting as it extracts patterns 
in the form of a decision tree or classification rules that is easy 
for humans to interpret. 

III. EXPERIMENTAL SETUP 

The dataset used in this study has been obtained from 
ENKA’s Global Health and Safety Management System 
(EHSE) [19]. ENKA is a global construction company, which 
employed about 200,000 people in its projects abroad, 
headquartered in Istanbul, Turkey. The features in the dataset 
are as follows: 

• Incident type: there are 17 different incident types 
available in the dataset: incision, burn, electric shock, 
luxation or broken bone, sprain or strain, crushing, 

shortness of breath, internal organ injury, trauma, 
puncture, limb loss, allergy, soft tissue injury, 
exposure to ultraviolet rays and others. 

• Cause of incident: In total there are 145 different 
causes defined in the database. These causes are 
separated into 4 different groups as follows; immediate 
action cause, immediate condition cause, root cause 
personal factors, and root cause job factors.  

• Activity during the incident: there are 30 different 
activities defined that are in progress during the 
incident.  

• Incident condition: the defined conditions are 
separated into two groups, weather and ground 
conditions. For weather and ground conditions there 
are 14 and 12 options available, respectively.  

• Hazard source: 23 different options are defined in the 
database for identifying the source of hazard of the 
incident. 

• Incident location: the occurred incident can be either 
inside or outside of a construction site.  

• Incident severity: the severity of an incident is 
categorized into 3 groups; serious, fatal, and not 
severe.  

• Incident time: the day and time of the incident are 
recorded. The time of day has been divided into 6 equal 
size periods, starting from 00:00 AM 

In the preprocessing step, nominal attributes are 
transformed to binary numeric by utilizing a one-hot encoding 
method. The raw dataset has 259 columns and about a 
thousand rows, where each row represents a single incident 
instance. The distribution of the incident types can be seen in 
Fig. 1. From the figure, it can be observed that the distribution 
is highly skewed. 

The most frequent incident types are “near miss”, “first 
aid”, “property damage”, and “medical treatment” covering 
89% of all incident records. Preliminary analysis shows that 
the performance of supervised and unsupervised algorithms 
improves when only these most frequent four types of 
incidents are considered. Therefore, in this study, the top four 
most frequent incident types that are mentioned above are 
used. 

The parameters that are mentioned in the previous section 
are merged into a single data frame. One-hot encoding 
technique is used to merge all parameters of a single incident 
on a single row. However, by doing so the sparsity of the data 
frame increases substantially. The raw dataset has 259 
nominal or numeric features. Some of these features will take 
all zeros or ones. Therefore, to decrease the dimension and 
sparsity of the data frame, these columns are eliminated before 
the analysis. Some of the weather conditions, such as hail, and 
certain values that exist as an option in the software in initial 
root cause and incident type attributes are never recorded in 
the database. Therefore, these one-hot encoded columns are 
composed entirely of zeros and eliminated. 



 

Fig. 1. Distribution of the incident types in the raw data set.  

Finally, some low resolution and irrelevant features are 
eliminated from the dataset. These features are: 

• Weather conditions: irrelevant and clear, 

• Ground conditions: flat and dry, 

• Incident severity: not severe and serious, and 

• Incident location: inside the construction site. 

Based on the preliminary analysis, these features that have 
high sparsity values do not provide any meaningful rules and 
are insignificant when classification models are developed, 
and thus are eliminated. The calculated sparsity value for the 
final dataset without the low-resolution features and the 
previous datasets are given in Table I. 

TABLE I.  SPARSITY VALUES OF THE RAW AND FILTERED DATASETS 

Number of Features Sparsity (%) 

259 94.42 

240 93.98 

233 94.78 

 

Descriptive analysis with 233 features and many values is 
not an easy task. Therefore, to reduce the complexity of the 
models and obtaining more easily interpretable patterns, the 
most influential features on the incident type are selected 
using the mutual information (MI) technique [20]. By 
calculating the MI, dependency between two given variables 
can be measured. If these selected variables are independent, 
then MI value will be zero. As dependency increases, the MI 
value also increases. MI is utilized as a feature selection 
method in a supervised setting. The incident type is selected 
as the class attribute. The relationship of each feature with the 
incident type is calculated. Highest MI values are presented in 
Fig. 2. 

After sorting these values from largest to smallest, for 
different sized datasets, the mean score of MI is plotted and 
presented in Fig. 3. 

 

Fig. 2. Top 10 features with highest MI score. 

Because the MI score decreases smoothly as the number 
of features in the dataset increases, different datasets with 20, 
30, 40, 50, 60, and 70 features are constructed. The mean MI 
scores for these datasets are presented in Table II. 

TABLE II.  MEAN MI SCORES OF THE CONSTRUCTED DATASETS 

Number of Features Mean of MI Score 

20 0.0546 

30 0.0487 

40 0.0445 

50 0.0412 

60 0.0383 

70 0.0358 

 

 

Fig. 3. Mean of MI score for the datasets with k-many features. 



IV. EXPERIMENT RESULTS AND DISCUSSION 

A. Decision Tree Model 

As mentioned in previous sections, incident type is the 
class attribute and used to train a decision tree model. J48 
decision tree algorithm in Waikato Environment for 
Knowledge Analysis (WEKA) machine learning software is 
used for this purpose [17]. The default values of hyper-
parameters are used, except for the confidence factor whose 
default value is changed from 0.25 to 0.01. As mentioned in 
the previous section, several datasets with different number of 
features are tested to observe which one performs the best. 
Based on the 10-fold cross-validation results, presented in 
Table III, the decision tree model that uses the dataset with 50 
features as an input outperforms the other models. 

The decision tree model is visualized in Fig. 4. According 
to this figure, the feature that provides the most information 
that is on the top of the tree is the hazard source of getting 
caught between two objects. On the right terminal nodes, it 
can be seen that if it is a serious accident then it will require 
medical treatment, else only a first aid will be necessary. This 
shows the decision tree model can learn common sense rules. 
We interpret this as an evidence for the soundness of the 
model for detecting patterns in incidents.  

When we analyze the decision tree further, we can see that 
lack of health and safety expert (HSE) meetings, which is a 
job factor root cause, and driving vehicle, which is an activity 
during an incident, are features that are important for 
classifying for the four classes of incidents. 

TABLE III.  DECISION TREE MODELS’ PERFORMANCE SUMMARIES 

Model Performance Criteria 
20 Feature 

Dataset 

30 Feature 

Dataset 

40 Feature 

Dataset 

50 Feature 

Dataset 

60 Feature 

Dataset 

70 Feature 

Dataset 

Correctly classified instances (%) 57.90 59.53 59.38 60.08 58.78 59.08 

Kappa statistic 0.3651 0.3908 0.3868 0.3623 0.3787 0.3861 

Mean absolute error 0.2706 0.2577 0.2553 0.2571 0.2508 0.2398 

Root mean squared error 0.3798 0.3764 0.3799 0.3911 0.3884 0.3927 

Relative absolute error (%) 77.88 74.18 73.48 74.01 72.18 69.01 

Root relative squared error (%) 91.07 90.33 91.16 93.85 93.22 94.24 

 
Fig. 4. Pruned decision tree model using 50 features. 

B. Apriori Model 

The objective of using ARM on the incident data is to 
detect interesting patterns in the form of itemsets or 
association rules. We mainly focus the frequent itemsets 
that includes an incident type and strong association rules 
that will conclude with an incident type. As mentioned, we 
use Apriori algorithm for this purpose. The dataset 
mentioned at the end of the “Data Preprocess” section is 
used as an input for this algorithm. A minimum support 
value of 2% is used in order to obtain as many rule 
combinations as possible. For extracting the association 
rules, the confidence parameter is set as 0.5. Consequently, 
Apriori generate 1799 association rules. The maximum 
number of items in antecedent and consequent of a rule is 
four and three, respectively. We apply several domain 

specific filters on the rules. For instance, association rules 
with antecedents containing incident types are eliminated. 
The total number of rules which has an incident type as a 
consequence is 131. The number of rules for “first aid”, 
“near miss”, and “property damage” type incidents is 82, 28, 
and 21, respectively. With the mentioned hyperparameter 
setting for the Apriori algorithm, no association rules for 
medical treatment type incidents are generated. This may be 
due to the scarcity of this type of incidents in the dataset.  

The distribution of the features in the antecedents for the 
rule sets for “near miss” (NM), “first aid” (FA), “property 
damage” (PD), type incidents are presented in Table IV. 
Immediate action cause is the most frequent feature set for 
all types of incidents. However, no information about the 
incident location or severity can be detected for any type of 
incident. 



TABLE IV.  DISTRIBUTION OF FEATURES IN THE ANTECEDENTS FOR 

THE RULES OF FA, PD, AND NM TYPE INCIDENTS 

Feature Sets in Antecedents FA (%) PD (%) 
NM 

(%) 

Immediate action causes 36.36 36.36 34.02 

Personal factor root causes 22.50 22.50 20.50 

Activity progress during 
incident 

11.26 11.26 11.34 

Hazard sources 9.53 9.53 9.62 

Immediate condition causes 8.23 8.23 8.15 

Incident time 4.33 4.33 5.31 

Day of incident 3.46 3.46 3.89 

Ground conditions 3.03 3.03 3.90 

Weather conditions 0.87 0.87 0.71 

Job factor root causes 0.43 0.43 2.56 

In Table V, the most interesting rules for “first aid” type 
incidents, based on their lift values are presented. Based on 
these results it can be interpreted that the immediate action 
and condition causes, and personnel factor root causes have 
the highest influence on a “first aid” type of incident. It can 
also be interpreted that performing actions with less than 
sufficient attention and improper posture increases the 
potential of the occurrence of a first-aid type incident. The 
decision tree model is shown in Fig. 4 also supports this 
finding as well. HSE meetings should not be neglected so 
that risk of a severe accident that leads to a “first aid” or 
“medical treatment” type incident, can be minimized. Based 
on the association rule analysis, sufficient training must be 
provided for the worker so that they know proper posture 
for working and the awareness that working hastily can lead 
to injuries.  

TABLE V.  RULE SET FOR FIRST AID INCIDENT TYPE 

Antecedents Lift 

● Immediate action cause: routine activity without thinking 
● Immediate action cause: incorrect position/posture for 

work 
● Personal factor root causes: training is not implemented in 

practice 

2.53 

● Immediate action cause: incorrect position/posture for 
work 

● Personal factor root causes: employee perceived haste 
● Immediate condition causes: congestion or restricted 

motion 

2.46 

● Personal factor root causes: employee perceived haste 
● Day of incident: Tuesday 
● Immediate condition causes: congestion or restricted 

motion 

2.41 

● Immediate action cause: incorrect position/posture for 
work  

● Immediate action cause: violation by individual 
● Personal factor root causes: employee perceived haste 

2.34 

● Immediate action cause: incorrect position/posture for 
work  

● Immediate action cause: improper decision making or 
lack of judgment of the risk 

● Personal factor root causes: training is not implemented in 
practice  

2.34 

The rule set obtained for “property damage” type of 
incidents is presented in Table VI. The lift values show that 
the rule set generated for “property damage” type incidents 
are much more important when compared with the rule set 
for “first aid” type incidents. Based on the results, it can be 
observed that driving a vehicle during the incident, increases 
the likelihood of a “property damage” type incident 
significantly. Additionally, the time of incident also seems 
to increase the likelihood of this type of incident as well. 
From the third row of Table VI, it can be interpreted that in 
the morning, a violation done by the worker who is driving 

a vehicle can lead to a “property damage” type incident. 
This can be the result of that worker not getting enough rest 
and therefore not being able to pay enough attention. HSEs 
should not allow the workers that are especially tired or 
cannot judge the risks or lack the knowledge of present 
hazards, to drive a vehicle, especially in the morning hours. 
HSEs also should inform the workers that individual 
violations and poor judgment skills can lead to even more 
severe consequences. 

According to the most interesting rules for “near-miss” 
incidents, it can be said that the muddy ground condition is 
an important. Especially, if the worker is driving a vehicle 
on a muddy ground surface, then the likelihood of a “near-
miss” type incident increases. Based on the root job cause 
factors, it can be interpreted that work planning must be 
done adequately to minimize the risk of an incident. 
Activities such as driving vehicles and mechanical lifting 
must be done much more carefully. Based on these 
outcomes, it can be interpreted that in case of poor ground 
conditions, the sufficiency of work planning becomes even 
more critical.  

TABLE VI.  RULE SET FOR PROPERTY DAMAGE INCIDENT TYPE 

Antecedents Lift 

● Activity during incident: driving vehicle 
● Immediate action cause: routine activity without thinking 
● Immediate action cause: violation by individual 

4.02 

● Activity during incident: driving vehicle 
● Immediate action cause: violation by individual 
● Immediate action cause: Lack of knowledge of present 

hazards 

3.99 

● Activity during incident: driving vehicle 
● Immediate action cause: violation by individual 
● Incident hour: 08:00AM-12:00PM 

3.47 

● Activity during incident: driving vehicle 
● Immediate action cause: Improper decision making or lack 

of judgment of the risk 
● Personal factor root causes: poor judgment skills 

3.21 

● Activity during incident: driving vehicle 
● Immediate action cause: violation by individual 
● Immediate action cause: Improper decision making or lack 

of judgment of the risk 

3.12 

TABLE VII.  RULE SET FOR NEAR MISS INCIDENT TYPE 

Antecedents Lift 

● Ground condition: muddy 
● Root cause job factors: insufficient work planning 

2.55 

● Ground condition: muddy 
● Activity during incident: driving vehicle 

2.27 

● Ground condition: muddy 
● Immediate action cause: violation by individual 

2.06 

● Activity during incident: lifting with mechanics 
● Incident severity: serious 

1.98 

● Root cause job factors: inadequate workplace layout 
● Root cause job factors: insufficient work planning 

1.94 

V. CONCLUSION 

This study aims to develop a decision support 
mechanism for health and safety experts (HSEs) so that 
necessary precautions can be taken to minimize the risk of 
different types of incidents. To achieve this aim DT and 
Apriori algorithms are utilized in a descriptive analytics 
setting to analyze important patterns in construction site 
incident data. The four most frequently recorded incident 
types cover 89% of the dataset, therefore, these incident 
types are used.  



Using 50 features a decision tree models is constructed 
and an accuracy up to 60% is obtained. The patterns 
observed at the end of decision tree modeling and Apriori 
analysis show overlapping results. Using these patterns 
HSEs can be informed so that the necessary precautions can 
be implemented to minimize the risk of potential incidents 
and losses. According to the discussions conducted with the 
ENKA’s Health and Safety Department the outcomes of 
these results are reliable and can be generalized. 
Additionally, the department experts also declared that these 
outcomes can be utilized to predict the potential risk of a 
given type of incident. 

The future work will include prediction of the potential 
risk of the investigated factors for the given incident type 
using different machine learning algorithms and provide 
insight for the site experts to take necessary precautions to 
minimize the risk. By coordinating with the HSE experts, 
the outcomes will be evaluated, and field implementation 
strategies will be discussed. 
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