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Abstract— Learning from previous incidents is essential for
preventing future incidents and taking the necessary
precautions. We analyze construction site incidents by
employing data science process and machine learning
algorithms such as decision trees and Apriori. Patterns that are
extracted wusing machine learning algorithms provides
interesting insights on the causes of incidents and their relations
with other factors. The dataset we use is a novel dataset
containing hundreds of construction site incidents between 2014
and 2020 from an international construction company. The data
consist of a wide range of features such as activity during
incident, incident condition, hazard source, incident severity,
location, and time. The decision tree is used in a descriptive
analytics setting to extract patterns in our dataset. Additionally,
the Apriori algorithm is employed to extract patterns in the
form of frequent itemsets and association rules. The patterns we
extract using machine learning algorithms shed light on
associations between different factors and different types of
incidents. One of the interesting results of our study is that the
patterns extracted from a supervised classifier in a descriptive
analytics setting collides with the patterns extracted using the
unsupervised machine learning algorithm of Apriori. The
generated rules can be used for informing the health and safety
experts by developing a decision support mechanism for taking
necessary precautions for minimizing the risk of different types
of incidents.

Keywords— construction site incident analysis, descriptive
analytics, association analysis, decision tree, Apriori

I. INTRODUCTION AND BACKGROUND

The safety and health of the workers at the construction
sites is a major health concern. Even though there are many
technological developments in the construction sector, it is
largely a manual and labor-intensive process. This makes it
prone to incidents mainly from human error [1]. By recording
past incidents accurately and in detail, it is possible to analyze
the data and learn from past accidents [2].

The construction industry is a high-risk sector. The
regulations stated by the health and safety regulators can be
ignored in many different construction locations [3]. In a study
conducted in Kuwait, it is revealed that there is a significant
lack of information in the recorded construction site accidents
[4]. Statistical studies provide many different informative
results that can be utilized for preventing these accidents. A
survey argues that the main causes of these accidents are lack
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of safety knowledge and negligence of the workers such as not
following safety rules or fail to use personal protective
equipment [5]. Additionally, unskilled worker employment,
and poor site management are also listed as important factors.
In another study, eight causes of construction site accidents
are identified, such as failure to enforce safety measures, lack
of necessary training, and contractors that neglect to fulfill
safety requirements [6]. It is important to prevent future
accidents by taking precautions based on detailed analysis of
the historical data and make predictions to regulate safety
settings and may be raise alarms if certain conditions are
encountered.

In the literature, several studies utilize machine learning
models for predicting incidents that may occur in a
construction project. Several construction incidents between
the years 2011 and 2016 are analyzed in [7]. The dataset
consists of 140.169 incident victims. Logistic regression (LR),
decision tree (DT), random forest (RF), and AdaBoost models
are used to predict the likelihood of mortality of workers by
analyzing injury and death data from previous fatal accidents.
Among these models, RF performs best in terms of prediction
accuracy. Another study utilized 2.8 million accidents that
have occurred in Japan over twelve years period and trained a
LR model [8]. In [9], RF and stochastic gradient tree boosting
(SGTB) models are utilized to predict injury type, energy
hazard source type, and injured body type. The constructed
models perform successfully in terms of rank probability skill
score and outperform parametric models that are found in the
literature [10]. Another study focuses on high-risk accidents
in the construction industry. They use a dataset that is
collected between 2007 and 2011 [11]. They use several
machine learning models including decision tree, and
association rule mining. Findings show that there are
significant correlations between time of accident, location of
the accident, body part affected, final consequence of
accident, and lost workdays. One of the interesting results they
find is that the frequency of accidents during night shifts is
smaller compared to other shifts. However, during the night
shifts, injuries to the head, back, spine, and limbs occur more
frequently compared to other shifts. These and many other
findings are consistent with the previous studies in the
literature [12] - [14]. A different study aims to identify
workers who are at risk of an accident that can result in severe
consequences and classify these workers to determine
adequate control measures [15]. Their results provide a



guideline for more efficient safety strategies, occupational
accident prevention, and programs for emergency scenarios.

We analyze construction site incidents using decision tree
classifier and association rule mining, the Apriori algorithm.
Frequent itemsets and association rules are mined to get
insight into the causes of a given incident type. Several sets of
rules are extracted for the most frequent incident types to
determine hidden patterns and associations between different
factors affecting different types of incidents. The mined
patterns can be used for informing the health and safety
experts (HSEs) by developing a decision support mechanism
for taking necessary precautions to minimize the risk of
different types of incidents.

In the following section a brief description for the machine
learning models is presented. Afterwards, in section 3, the
properties of the used dataset and the preprocessing steps are
explained. The experiment results are provided in section 4,
along with the discussion of the results. Our paper is
concluded with section 4, including outlook for the future
work.

II. APPROACH

Association rule mining (ARM) analysis is mainly
conducted for the identification of significant associations
between items and patterns that occur frequently, in a large
dataset. Apriori algorithm is one of the most common and
frequently used methods for association rule mining analysis.
In the Apriori algorithm, all itemsets that occur above a certain
threshold, namely minimum support, are efficiently generated
[16]. After these itemsets are generated, based on a second
threshold, which can be either the confidence or the lift values,
association rules are formed. Confidence is defined as the
likelihood of a consequent, occurring based on a given
antecedent. Lift value is the increase of the probability of a
consequent occurring, given a certain antecedent. The
“mlxtend” package available in Python can be used for
association rules analysis [17]. The Apriori function in this
package supports one-hot-encoded data frames. Since our
dataset consist of nominal features and their values, we first
convert our dataset into a one-hot encoded format in which
each nominal feature value is represented as a column taking
0 or 1 based on the occurrence in a specific incident instance
or row. From this aspect each column, representing a nominal
feature value, corresponds to an item. On the other hand, non-
zero values in each row or instance can be considered as an
itemset.

Decision trees are one of the most popular classification
algorithms in machine learning [18]. This algorithm can also
be used in a descriptive analytics setting as it extracts patterns
in the form of a decision tree or classification rules that is easy
for humans to interpret.

III. EXPERIMENTAL SETUP

The dataset used in this study has been obtained from
ENKA’s Global Health and Safety Management System
(EHSE) [19]. ENKA is a global construction company, which
employed about 200,000 people in its projects abroad,
headquartered in Istanbul, Turkey. The features in the dataset
are as follows:

e Incident type: there are 17 different incident types
available in the dataset: incision, burn, electric shock,
luxation or broken bone, sprain or strain, crushing,

shortness of breath, internal organ injury, trauma,
puncture, limb loss, allergy, soft tissue injury,
exposure to ultraviolet rays and others.

e (ause of incident: In total there are 145 different
causes defined in the database. These causes are
separated into 4 different groups as follows; immediate
action cause, immediate condition cause, root cause
personal factors, and root cause job factors.

e Activity during the incident: there are 30 different
activities defined that are in progress during the
incident.

e Incident condition: the defined conditions are
separated into two groups, weather and ground
conditions. For weather and ground conditions there
are 14 and 12 options available, respectively.

e Hazard source: 23 different options are defined in the
database for identifying the source of hazard of the
incident.

e Incident location: the occurred incident can be either
inside or outside of a construction site.

e Incident severity: the severity of an incident is
categorized into 3 groups; serious, fatal, and not
severe.

¢ Incident time: the day and time of the incident are
recorded. The time of day has been divided into 6 equal
size periods, starting from 00:00 AM

In the preprocessing step, nominal attributes are
transformed to binary numeric by utilizing a one-hot encoding
method. The raw dataset has 259 columns and about a
thousand rows, where each row represents a single incident
instance. The distribution of the incident types can be seen in
Fig. 1. From the figure, it can be observed that the distribution
is highly skewed.

The most frequent incident types are ‘“near miss”, “first
aid”, “property damage”, and “medical treatment” covering
89% of all incident records. Preliminary analysis shows that
the performance of supervised and unsupervised algorithms
improves when only these most frequent four types of
incidents are considered. Therefore, in this study, the top four
most frequent incident types that are mentioned above are
used.

The parameters that are mentioned in the previous section
are merged into a single data frame. One-hot encoding
technique is used to merge all parameters of a single incident
on a single row. However, by doing so the sparsity of the data
frame increases substantially. The raw dataset has 259
nominal or numeric features. Some of these features will take
all zeros or ones. Therefore, to decrease the dimension and
sparsity of the data frame, these columns are eliminated before
the analysis. Some of the weather conditions, such as hail, and
certain values that exist as an option in the software in initial
root cause and incident type attributes are never recorded in
the database. Therefore, these one-hot encoded columns are
composed entirely of zeros and eliminated.
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Fig. 1. Distribution of the incident types in the raw data set.

Finally, some low resolution and irrelevant features are
eliminated from the dataset. These features are:
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Ground conditions: flat and dry,
Incident severity: not severe and serious, and

Incident location: inside the construction site.

Fig. 2. Top 10 features with highest MI score.

Because the MI score decreases smoothly as the number
of features in the dataset increases, different datasets with 20,
30, 40, 50, 60, and 70 features are constructed. The mean MI
scores for these datasets are presented in Table II.

Based on the preliminary analysis, these features that have
high sparsity values do not provide any meaningful rules and
are insignificant when classification models are developed,
and thus are eliminated. The calculated sparsity value for the
final dataset without the low-resolution features and the
previous datasets are given in Table I.

TABLE II. MEAN MI SCORES OF THE CONSTRUCTED DATASETS
Number of Features Mean of MI Score
20 0.0546
30 0.0487
40 0.0445
50 0.0412
60 0.0383
70 0.0358

TABLE L. SPARSITY VALUES OF THE RAW AND FILTERED DATASETS
Number of Features Sparsity (%)
259 94.42
240 93.98
233 94.78
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Descriptive analysis with 233 features and many values is
not an easy task. Therefore, to reduce the complexity of the
models and obtaining more easily interpretable patterns, the
most influential features on the incident type are selected
using the mutual information (MI) technique [20]. By
calculating the MI, dependency between two given variables
can be measured. If these selected variables are independent,
then MI value will be zero. As dependency increases, the MI
value also increases. MI is utilized as a feature selection
method in a supervised setting. The incident type is selected
as the class attribute. The relationship of each feature with the
incident type is calculated. Highest MI values are presented in
Fig. 2.

After sorting these values from largest to smallest, for
different sized datasets, the mean score of MI is plotted and
presented in Fig. 3.
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Fig. 3. Mean of MI score for the datasets with k-many features.




IV. EXPERIMENT RESULTS AND DISCUSSION

A. Decision Tree Model

As mentioned in previous sections, incident type is the
class attribute and used to train a decision tree model. J48
decision tree algorithm in Waikato Environment for
Knowledge Analysis (WEKA) machine learning software is
used for this purpose [17]. The default values of hyper-
parameters are used, except for the confidence factor whose
default value is changed from 0.25 to 0.01. As mentioned in
the previous section, several datasets with different number of
features are tested to observe which one performs the best.
Based on the 10-fold cross-validation results, presented in
Table I1I, the decision tree model that uses the dataset with 50
features as an input outperforms the other models.

The decision tree model is visualized in Fig. 4. According
to this figure, the feature that provides the most information
that is on the top of the tree is the hazard source of getting
caught between two objects. On the right terminal nodes, it
can be seen that if it is a serious accident then it will require
medical treatment, else only a first aid will be necessary. This
shows the decision tree model can learn common sense rules.
We interpret this as an evidence for the soundness of the
model for detecting patterns in incidents.

When we analyze the decision tree further, we can see that
lack of health and safety expert (HSE) meetings, which is a
job factor root cause, and driving vehicle, which is an activity
during an incident, are features that are important for
classifying for the four classes of incidents.

TABLE III. DECISION TREE MODELS’ PERFORMANCE SUMMARIES
Model Performance Criteria 20 Feature 30 Feature 40 Feature 50 Feature 60 Feature 70 Feature
Dataset Dataset Dataset Dataset Dataset Dataset
Correctly classified instances (%) 57.90 59.53 59.38 60.08 58.78 59.08
Kappa statistic 0.3651 0.3908 0.3868 0.3623 0.3787 0.3861
Mean absolute error 0.2706 0.2577 0.2553 0.2571 0.2508 0.2398
Root mean squared error 0.3798 0.3764 0.3799 0.3911 0.3884 0.3927
Relative absolute error (%) 77.88 74.18 73.48 74.01 72.18 69.01
Root relative squared error (%) 91.07 90.33 91.16 93.85 93.22 94.24
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Fig. 4. Pruned decision tree model using 50 features.

B. Apriori Model

The objective of using ARM on the incident data is to
detect interesting patterns in the form of itemsets or
association rules. We mainly focus the frequent itemsets
that includes an incident type and strong association rules
that will conclude with an incident type. As mentioned, we
use Apriori algorithm for this purpose. The dataset
mentioned at the end of the “Data Preprocess” section is
used as an input for this algorithm. A minimum support
value of 2% is used in order to obtain as many rule
combinations as possible. For extracting the association
rules, the confidence parameter is set as 0.5. Consequently,
Apriori generate 1799 association rules. The maximum
number of items in antecedent and consequent of a rule is
four and three, respectively. We apply several domain

specific filters on the rules. For instance, association rules
with antecedents containing incident types are eliminated.
The total number of rules which has an incident type as a
consequence is 131. The number of rules for “first aid”,
“near miss”, and “property damage” type incidents is 82, 28,
and 21, respectively. With the mentioned hyperparameter
setting for the Apriori algorithm, no association rules for
medical treatment type incidents are generated. This may be
due to the scarcity of this type of incidents in the dataset.

The distribution of the features in the antecedents for the
rule sets for “near miss” (NM), “first aid” (FA), “property
damage” (PD), type incidents are presented in Table IV.
Immediate action cause is the most frequent feature set for
all types of incidents. However, no information about the
incident location or severity can be detected for any type of
incident.



TABLE IV. DISTRIBUTION OF FEATURES IN THE ANTECEDENTS FOR
THE RULES OF FA, PD, AND NM TYPE INCIDENTS

Feature Sets in Antecedents FA (%) | PD (%) 1(\,1,2/;
Immediate action causes 36.36 36.36 34.02
Personal factor root causes 22.50 22.50 20.50
Act.lwty progress during 1126 11.26 1134
incident
Hazard sources 9.53 9.53 9.62
Immediate condition causes 8.23 8.23 8.15
Incident time 433 4.33 5.31
Day of incident 3.46 3.46 3.89
Ground conditions 3.03 3.03 3.90
Weather conditions 0.87 0.87 0.71
Job factor root causes 0.43 0.43 2.56

In Table V, the most interesting rules for “first aid” type
incidents, based on their lift values are presented. Based on
these results it can be interpreted that the immediate action
and condition causes, and personnel factor root causes have
the highest influence on a “first aid” type of incident. It can
also be interpreted that performing actions with less than
sufficient attention and improper posture increases the
potential of the occurrence of a first-aid type incident. The
decision tree model is shown in Fig. 4 also supports this
finding as well. HSE meetings should not be neglected so
that risk of a severe accident that leads to a “first aid” or
“medical treatment” type incident, can be minimized. Based
on the association rule analysis, sufficient training must be
provided for the worker so that they know proper posture
for working and the awareness that working hastily can lead
to injuries.

TABLE V. RULE SET FOR FIRST AID INCIDENT TYPE

Antecedents Lift
e Immediate action cause: routine activity without thinking
e Immediate action cause: incorrect position/posture for
work 2.53
® Personal factor root causes: training is not implemented in
practice

e Immediate action cause: incorrect position/posture for
work

e Personal factor root causes: employee perceived haste 2.46

e Immediate condition causes: congestion or restricted
motion

e Personal factor root causes: employee perceived haste
® Day of incident: Tuesday
. .. . . 2.41
o Immediate condition causes: congestion or restricted
motion
e Immediate action cause: incorrect position/posture for
work 234
e Immediate action cause: violation by individual ’
® Personal factor root causes: employee perceived haste
e Immediate action cause: incorrect position/posture for
work
e Immediate action cause: improper decision making or
. . 2.34
lack of judgment of the risk
e Personal factor root causes: training is not implemented in
practice

The rule set obtained for “property damage” type of
incidents is presented in Table VI. The lift values show that
the rule set generated for “property damage” type incidents
are much more important when compared with the rule set
for “first aid” type incidents. Based on the results, it can be
observed that driving a vehicle during the incident, increases
the likelihood of a “property damage” type incident
significantly. Additionally, the time of incident also seems
to increase the likelihood of this type of incident as well.
From the third row of Table VI, it can be interpreted that in
the morning, a violation done by the worker who is driving

a vehicle can lead to a “property damage” type incident.
This can be the result of that worker not getting enough rest
and therefore not being able to pay enough attention. HSEs
should not allow the workers that are especially tired or
cannot judge the risks or lack the knowledge of present
hazards, to drive a vehicle, especially in the morning hours.
HSEs also should inform the workers that individual
violations and poor judgment skills can lead to even more
severe consequences.

According to the most interesting rules for “near-miss”
incidents, it can be said that the muddy ground condition is
an important. Especially, if the worker is driving a vehicle
on a muddy ground surface, then the likelihood of a “near-
miss” type incident increases. Based on the root job cause
factors, it can be interpreted that work planning must be
done adequately to minimize the risk of an incident.
Activities such as driving vehicles and mechanical lifting
must be done much more carefully. Based on these
outcomes, it can be interpreted that in case of poor ground
conditions, the sufficiency of work planning becomes even
more critical.

TABLE VL RULE SET FOR PROPERTY DAMAGE INCIDENT TYPE

Antecedents Lift

e Activity during incident: driving vehicle

e Immediate action cause: routine activity without thinking 4.02

e Immediate action cause: violation by individual

e Activity during incident: driving vehicle

e Immediate action cause: violation by individual

e Immediate action cause: Lack of knowledge of present
hazards

e Activity during incident: driving vehicle

e Immediate action cause: violation by individual 3.47

o Incident hour: 08:00AM-12:00PM

e Activity during incident: driving vehicle

e Immediate action cause: Improper decision making or lack
of judgment of the risk

® Personal factor root causes: poor judgment skills

e Activity during incident: driving vehicle

e Immediate action cause: violation by individual

e Immediate action cause: Improper decision making or lack
of judgment of the risk

3.99

3.21

3.12

TABLE VIL RULE SET FOR NEAR MISS INCIDENT TYPE

Antecedents Lift
e Ground condition: muddy
® Root cause job factors: insufficient work planning
e Ground condition: muddy
o Activity during incident: driving vehicle
o Ground condition: muddy
e Immediate action cause: violation by individual
® Activity during incident: lifting with mechanics
o Incident severity: serious
® Root cause job factors: inadequate workplace layout
® Root cause job factors: insufficient work planning

2.55

227

2.06

V. CONCLUSION

This study aims to develop a decision support
mechanism for health and safety experts (HSEs) so that
necessary precautions can be taken to minimize the risk of
different types of incidents. To achieve this aim DT and
Apriori algorithms are utilized in a descriptive analytics
setting to analyze important patterns in construction site
incident data. The four most frequently recorded incident
types cover 89% of the dataset, therefore, these incident
types are used.



Using 50 features a decision tree models is constructed
and an accuracy up to 60% is obtained. The patterns
observed at the end of decision tree modeling and Apriori
analysis show overlapping results. Using these patterns
HSEs can be informed so that the necessary precautions can
be implemented to minimize the risk of potential incidents
and losses. According to the discussions conducted with the
ENKA’s Health and Safety Department the outcomes of
these results are reliable and can be generalized.
Additionally, the department experts also declared that these
outcomes can be utilized to predict the potential risk of a
given type of incident.

The future work will include prediction of the potential
risk of the investigated factors for the given incident type
using different machine learning algorithms and provide
insight for the site experts to take necessary precautions to
minimize the risk. By coordinating with the HSE experts,
the outcomes will be evaluated, and field implementation
strategies will be discussed.
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