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Abstract It is known that latent semantic indexing (LSI) takes advantage of implicit higher-order (or latent) structure
in the association of terms and documents. Higher-order relations in LSI capture “latent semantics”. These findings have
inspired a novel Bayesian framework for classification named Higher-Order Naive Bayes (HONB), which was introduced
previously, that can explicitly make use of these higher-order relations. In this paper, we present a novel semantic smoothing
method named Higher-Order Smoothing (HOS) for the Naive Bayes algorithm. HOS is built on a similar graph based data
representation of the HONB which allows semantics in higher-order paths to be exploited. We take the concept one step
further in HOS and exploit the relationships between instances of different classes. As a result, we move beyond not only
instance boundaries, but also class boundaries to exploit the latent information in higher-order paths. This approach improves
the parameter estimation when dealing with insufficient labeled data. Results of our extensive experiments demonstrate the
value of HOS on several benchmark datasets.
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1 Introduction

Traditional machine learning algorithms assume
that instances are independent and identically dis-
tributed (IID)[1]. This assumption simplifies the un-
derlying mathematics of statistical models and allows
the classification of a single instance. However, in real
world datasets, entities and their attributes are highly
interconnected either by explicit or implicit relations.
Consequently, the IID approach does not fully make
use of valuable information about these relationships.
There are several studies which exploit explicit link in-
formation in order to overcome the shortcomings of IID
approach[1-4]. However, the use of explicit links has
a significant drawback. In order to classify a single
instance, an additional context needs to be provided.
On the other hand, higher-order learning approach ad-
dresses this drawback by exploiting the implicit re-
lations during parameter estimation in the training
phase. In general, it is a statistical relational learning
framework, which allows supervised and unsupervised

algorithms to leverage relationships between attributes
and instances. This approach makes use of implicit link
information[5-9]. Using implicit link information within
data provides a richer data representation. In real world
applications, it is often rather difficult and usually ex-
pensive to obtain labelled data. Therefore it is of great
importance for classification systems to perform reason-
ably well using a small amount of labelled data. Using
implicit links is known to be effective especially when
we have limited labelled data. A novel Bayesian frame-
work for classification named Higher-Order Naive Bayes
(HONB) has been introduced[6-7]. HONB is built on
a graph-based data representation, which leverages im-
plicit higher-order links between attribute values across
different instances[6-8]. These implicit links are defined
as higher-order paths. Higher-order paths of this kind
richly connect attributes or features such as terms in
documents of a text collection. HONB exploits this
rich connectivity[6].

In the present study, we follow the same practice of
exploiting implicit link information via developing a no-
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vel semantic smoothing method for Naive Bayes (NB).
We call it Higher-Order Smoothing (HOS). HOS is built
upon a novel graph-based data representation, which
was inspired from the data representation in HONB.
Moreover, we improve the concept by taking it one step
further to exploit the relationships between instances of
different classes in HOS. Thus HOS moves beyond the
instance boundaries and the class boundaries to fully
exploit the latent information in higher-order paths.

We have performed extensive experiments by vary-
ing the size of the training set in order to simulate real
world settings and compare our algorithm with several
existing smoothing methods and other classification al-
gorithms. Our results on several benchmark datasets
show that HOS significantly increases the performance
of NB. Furthermore, it can even outperform support
vector machines (SVM) on some datasets.

The rest of the article is organized as follows. In Sec-
tion 2, we briefly review the related work. In Section 3,
we provide background information on NB, smoothing
methods, higher-order data representations and algo-
rithms. Based on these backgrounds, we present our
approach in Section 4. Subsequently, our experimental
setup is described in Section 5, while our results are
presented in Section 6. These are then followed by dis-
cussion in Section 7. Finally, in Section 8, we provide
conclusion remarks and future work directions.

2 Related Work

The Latent Semantic Indexing (LSI) algorithm[10] is
a widely used technique in text mining and information
retrieval. It has been shown that LSI takes advantage
of implicit higher-order (or latent) structure in the as-
sociation of terms and documents. Higher-order rela-
tions in LSI capture “latent semantics”[11]. There are
several LSI-based classifiers. Among these, in [12] the
authors propose an LSI-based k-Nearest Neighborhood
(LSI k-NN) algorithm in a semi-supervised setting for
short text classification. This is one of the straightfor-
ward uses of LSI in text classification. In this study,
authors use the k-Nearest Neighborhood (k-NN) algo-
rithm which is based on calculating distance or simi-
larities between training instances and a test instance
in the transformed LSI space. They set the number of
neighbors to 30 and use the noisy-or operator. A simi-
lar approach is used in a supervised setting to build an
LSI-based k-NN algorithm as one of the baseline algo-
rithms in [7]. In this study, the number of neighbors is
set to 25, and the dimension parameter (k) of the LSI
algorithm is optimized.

The LSI algorithm and its ability to reveal latent
semantics make one of our primary motivations. How-
ever, there are several difficulties in using LSI for text

classification; it is a highly complex, unsupervised,
black box algorithm. In our study we attempt to use
higher-order paths explicitly in a supervised setting.
Our second motivation stems from the studies in link
mining that utilize explicit links[4]. Several studies
in this domain have shown that significant improve-
ments can be achieved by classifying multiple instances
collectively[1-3]. However, use of explicit links requires
an additional context for classification of a single in-
stance. This limitation restricts the applicability of
these algorithms.

There are several studies, which exploit implicit link
information in order to improve the performance of ma-
chine learning algorithms[5-7]. Using the implicit link
information within data provides a richer data represen-
tation and it is shown to be effective especially under
the scarce training data conditions.

A novel Bayesian framework named Higher-Order
Naive Bayes (HONB) has been introduced in [6-7].
HONB employs a graph-based data representation and
leverages the co-occurrence relations between attribute
values across different instances. These implicit links
are called higher-order paths. Such higher-order paths
richly connect attributes or features such as the terms
in the documents of a text collection. HONB exploits
this rich connectivity[7]. Furthermore, this framework
is generalized by developing a novel data-driven space
transformation that allows vector space classifiers to
take advantage of relational dependencies captured by
higher-order paths between features[6]. This has led to
the development of Higher-Order Support Vector Ma-
chines (HOSVM) algorithm. The higher-order learn-
ing framework is a statistical relational learning frame-
work. It consists of several supervised and unsupervised
machine learning algorithms in which relationships be-
tween different instances are leveraged via higher-order
paths[8-9,13].

A higher-order path is shown in Fig.1 (reproduced
from [11]). This figure depicts three documents, D1,
D2 and D3, each containing two terms represented by
the letters A, B, C and D. Below the three documents
there is an higher-order path that links term A with
term D through B and C. This is a third-order path

Fig.1. Higher-order co-occurrence[11].
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since three links, or “hops,” connect A and D. Simi-
larly, there is a second-order path between A and C
through B. A co-occurs with B in document D1, and
B co-occurs with C in document D2. Even if terms
A and C never co-occur in any of the documents in a
corpus, the regularity of these second-order paths may
reveal latent semantic relationships such as synonymy.

It is well known that NB and SVM are the most
popular algorithms in text classification. There are two
commonly referred event models in NB for text cate-
gorization: multivariate Bernoulli (MVNB) and multi-
nomial models (MNB). The first one is also known as
binary independence model. In this model presence
and absence of the terms are represented as “1” and
“0”, respectively. On the other hand, the multinomial
model is a unigram language model with integer term
counts. Thus, each class can be defined as a multi-
nomial distribution[14]. McCallum and Nigam[14] com-
pared multivariate Bernoulli and multinomial models
on several different datasets. Their experimental results
confirm that the multivariate Bernoulli event model
shows better performance at smaller vocabulary sizes,
whereas the multinomial model generally performs well
with large vocabulary sizes[14].

In another study[15], the authors propose a multi-
variate Poisson Naive Bayes text classification model
with weight-enhancing method to improve perfor-
mances on rare categories. Their experiments show
that, the proposed model is a good alternative to tra-
ditional Naive Bayes classifier because it allows more
reasonable parameter estimation.

Majority of the text classification studies which use
the Naive Bayes algorithm, employ multinomial model
based on the well-known contribution by McCallum and
Nigam[14]. It is generally assumed that the term fre-
quency data is a richer representation of documents
than the binary word occurrences.

However, there are several studies in the literature
that report contradictory results about the benefit of
using term frequencies. For instance, MNB is shown to
perform better with binary data in a number of cases
such as spam detection[16-17]. Similarly, our results on
several datasets also reveal contradictory results and
they show that the binary term frequencies and the
multivariate binary models can outperform algorithms
operating on term frequency data on several cases.

In general, the NB parameter estimation drastically
suffers from the presence of sparsity due to the very
large number of parameters to estimate in the text clas-
sification. The number of parameters corresponds to
(|V ||C|+|C|) where V denotes the dictionary and C de-
notes the set of class labels[18]. The sparsity of the text
data increases the importance of smoothing methods

since they are intended to distribute a certain amount
of probability mass to the previously unseen events.

Most of the studies on NB text classification use
the Laplace smoothing by default. Only a few stu-
dies attempt to use different smoothing methods. For
instance, the authors of [19] used multinomial model
with several different smoothing techniques which ori-
gin from the statistical language modeling field and are
generally used with n-gram language models. These
include absolute discounting with unigram backing-off
and absolute discounting with unigram interpolation.
They stated that the absolute discounting with uni-
gram interpolation gives better results than the Laplace
smoothing. They also used document length normali-
zation. In [20], the authors augment NB with n-
grams and advanced smoothing methods from language
modeling domain such as linear interpolation, absolute
smoothing, Good-Turing smoothing, and Witten-Bell
smoothing. A semantic smoothing method based on the
extraction of topic signatures was proposed in [22]. The
topic signatures consist of multi-word phrases such as
the n-grams or collocations that are extracted from the
training corpus. After having the topic signatures and
multiword phrases extracted, the authors used them in
a semantic smoothing background collection model to
smooth and map the topic signatures. They demon-
strated that when the training data is small, the NB
classifier with semantic smoothing outperforms the NB
with background smoothing (Jelinek-Mercer) and the
NB with Laplace smoothing.

SVM is a popular large margin classifier. This ma-
chine learning method aims to find a decision boundary
that separates points into two classes by maximizing the
margin[23]. SVM can project data points to a higher di-
mensional space by using kernel techniques so that the
data points become linearly separable. There are seve-
ral kernels that can be used with the SVM algorithm.
The linear kernel is known to perform well on the text
classification since many text categorization problems
are linearly separable[23]. We include the SVM results
on both binary and term frequency data in our experi-
ments for comparing our method with a well-accepted
text classifier.

There are only a small number of studies that em-
ploy tripartite graph in text categorization. One of
these[24] proposed a new clustering algorithm to auto-
matically mine hierarchical taxonomy from the dataset
in order to take advantage of hierarchical classifier. The
method is called Consistent Bipartite Spectral Graph
Co-Partitioning (CBSGC) algorithm, which is based on
generalized singular value decomposition. According to
the study, document-term and category-document bi-
partite graphs reflect only partial information of the
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data. Therefore, the approach co-clusters the category,
document, and term into a tripartite graph in order to
leverage the complementary information contained in
them. The experiments show that, CBSGC discovers
a reasonable hierarchical taxonomy and as a result it
improves the classification accuracy.

A recent graph-based study[25] introduces the con-
cept of distance graphs representation of documents
instead of traditional vector space representation. It
shows that the distance graphs provide additional infor-
mation about the ordering and distance between terms
compared with the vector space representation. This
new representation is similar to our higher-order ap-
proach in creating a graph representation of words and
the higher-order paths between terms. We can observe
that they are creating a directed graph representation
with self-loops, which indicates the frequency and the
order of words in the context of a document. On the
other hand, our approach is based on an undirected
graph representation of words in the context of the
training set of documents. In order to illustrate the ad-
vantages of the distance graphs, the authors of [25] con-
ducted experiments on three well-known datasets such
as the 20 Newsgroups, Reuters-21578, and WebKB.
They also investigated different applications includ-
ing the classification, clustering, and similarity search.
They leveraged the distance graph models with three
different classification algorithms and two different clus-
tering algorithms. They also tested the cosine simi-
larity with the use of the vector-space models, includ-
ing unigram, bigram, and trigram, as well as the dis-
tance graph models of different orders ranging from one
to four. They showed that the distance graphs per-
form better than the vector space models for the three
datasets.

The authors of a recent paper[26] focused on ques-
tion classification on fine-grained taxonomies. They
presented a novel algorithm named as DC2. DC2 aims
to improve the question classification performance and
it is based on the divergence of the probability distri-
butions of terms (Poisson distribution). The technique
was applied to a large corpora based on class related
fragments for question classification in English and
Spanish and compared with several supervised meth-
ods including SVM.

Nguyen et al.[27] focused the properties of the CFC
(class feature centroid) classifier especially on the bias
toward the large classes in class imbalance problems.
In order to overcome this bias in skewed class distri-
butions, the authors proposed an improvement. In-
stead of weighting terms by presence or absence in
the classes, they used the Kullback-Leibler (KL) diver-
gence measure between the pairs of class conditional

term probabilities for binary class datasets. They used
Jensen-Shannon (JS) divergence for multiclass datasets.
They evaluated their technique on three binary datasets
(movie review, sentiment polarity, and multi-domain
sentiment) and two multiclass datasets (Reuters-21578
and 20 Newsgroups). Additionally, they developed a
word cloud visualization approach to highlight the im-
portant class specific words that are selected by their
term weighting method. They noted that these words
are not ranked high by unsupervised term weighting.
This approach is similar to our approach in a way that
HOS actually gives more emphasis and weight to the
terms that have more relations with class labels com-
pared with HONB.

3 Background

In this section we review the Naive Bayes (NB) event
models and data representations. Although our method
is not restricted to a particular application domain, we
focus on textual data.

3.1 Naive Bayes Event Models

There are two generative event models that are com-
monly used with NB for text classification. The first
and the less popular one is the multivariate Bernoulli
event model which is also known as binary indepen-
dence NB model (MVNB). In this model, documents
are considered as events and they are represented a
vector of binary attributes indicating occurrence of
terms in the document. The class conditional document
probability in (1) is calculated by using the individual
class conditional term probabilities of the document in
(2)[28]:

P (d|cj) =
∏

w∈d

P (wi|cj)
1− P (wi|cj)

∏

w∈W

(1− P (wi|cj)),
(1)

φcj ,wi = P (wi|cj) =
1 +

∑|D|
d∈Dj

wi(d)

2 + |Dj | . (2)

In (2), the class conditional term probability corre-
sponds to the ratio of the number of documents that
contain term wi in class cj to the total number of doc-
uments in class cj . The constants in numerator and de-
nominator in (2) are introduced according to Laplace’s
rule of succession in order to avoid the zero probability
problem. The Laplace smoothing adds a pseudo count
to every word count. The main disadvantage of Laplace
is giving too much probability mass to previously un-
seen events[29].

The second NB event model is the multinomial
model (MNB) which can make use of term frequencies.
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Suppose term wi occurs n(d,wi) times in document d,
which is said to have length `d =

∑
wi

n(d,wi). With this

definition the class conditional document probability is
calculated as in (3)

P (d|cj) = P (L = `d|cj)P (d|`d, cj)

=P (L = `d|cj)
(

`d

{n(d,wi)}
) ∏

wi∈d

θ
n(d,wi)
t . (3)

On the other hand, the class conditional term proba-
bilities are estimated using (4).

P (wi|cj) =
1 +

∑|D|
d∈Dj

n(d,wi)

|W |+
∑

d∈Dj ,wi∈d
n(d,wi)

, (4)

where |W | is the vocabulary size (i.e., the total number
of words)[28].

Because of the sparsity in the training data, miss-
ing terms (unseen events) in the document can cause
“zero probability problem” in NB. To eliminate this,
we need to distribute some probability mass to pre-
viously unseen terms. This process is generally known
as smoothing. The most common smoothing method
in NB is the Laplace smoothing. Formulas of the NB
event models in (2) and (4) include the Laplace smooth-
ing. In the next subsection, we will provide details of a
more advanced smoothing method which performs well
especially on MVNB.

3.2 Jelinek-Mercer Smoothing

In the Jelinek-Mercer smoothing method, the maxi-
mum estimate is interpolated with the smoothed lower
order distribution[22]. This is achieved by the linear
combination of maximum likelihood estimate (5) with
the collection model (6) as shown in (7). In (6), D
represents the whole training set, including documents
from all the classes.

Pml(wi|cj) =

∑|D|
d∈Dj

wi(d)

|Dj | , (5)

P (wi|D) =

∑|D|
d

wi(d)

|D| , (6)

P (wi|cj) = (1− β)× Pml(wi|cj) + β × P (wi|D).(7)

3.3 Higher-Order Data Representation

The graph-based data representation we built upon
is initially used in [7]. It is noted that the definition
of a higher-order path is similar to the path definition
in graph theory, which states that given a non-empty

graph G = (V, E) of the form V = {x0, x1, . . . , xk},
E = {x0x1, x1x2, . . . , xk−1xk} and given that the nodes
in V are distinct, two vertices xi and xk are linked by
a path P where the number of edges in P is its length.

A different approach is given in [6] by using a
bipartite graph. It builds a bipartite graph G =
((VD, VW ), E) from a set of D documents. In this
graph, vertices in VD correspond to documents and ver-
tices in VW correspond to terms. “There is an edge
(d,w) between two vertices where d ∈ VD and w ∈ VW

iff word w occurs in document d. In this representation,
a higher-order path in dataset D can be considered as
a chain subgraph of G. For example a chain wi—dl—
wk—dr—wj which is also denoted as (wi, dl, wk, dr, wj)
is a second-order path since it spans through two dif-
ferent document vertices. Higher-order paths simulta-
neously capture term co-occurrences within documents
as well as term sharing patterns across documents, and
in doing so provide a much richer data representation
than the traditional feature vector form”[6].

3.4 Higher-Order Naive Bayes

The rich relational information between the terms
and the documents can be exploited by using higher-
order paths. In Higher-Order Naive Bayes (HONB),
this valuable information is integrated into a multiva-
riate Bernoulli Naive Bayes model (MNVB) by estimat-
ing parameters from the higher-order paths instead of
the documents[6]. Formulation of the parameter esti-
mates are given in (8), (9) which are taken from [6].

P (wi|cj) =
1 + ϕ(wi, Dj)

2 + φ(Dj)
, (8)

P (cj) =
φ(Dj)∑K

k=1
φ(Dk)

. (9)

The number of higher-order paths containing term
wi given the set of documents that belongs to cj is
represented by ϕ(wi, Dj). On the other hand, φ(Dj)
denotes the total number of higher-order paths ex-
tracted from the documents of cj . (8) includes the
Laplace smoothing in order to avoid the “zero proba-
bility” problem for the terms that do not exist in cj .

4 Approach

In this section we present a novel semantic smooth-
ing method called Higher-Order Smoothing (HOS) by
following the same approach of exploiting implicit link
information. HOS is built on a graph-based data repre-
sentation from the previous algorithms in higher-order
learning framework such as HONB[7]. However, in
HONB, higher-order paths are extracted in the context



Mitat Poyraz et al.: Higher-Order Smoothing Naive Bayes 381

of a particular class. Therefore, we cannot exploit the
relations between the terms and the documents in the
different classes.

In this study, we take the concept one step further
and exploit the relationships between instances of dif-
ferent classes in order to improve the parameter esti-
mation. As a result, we are moving beyond not only
document boundaries but also class boundaries to ex-
ploit the latent semantic information in higher-order co-
occurrence paths between terms. We accomplish this by
extracting the higher-order paths from the whole train-
ing set including all classes of documents. Our aim is
to reduce sparsity especially in the face of insufficient
labeled data conditions.

In order to do so, we first convert the nominal class
attribute to a number of binary attributes each repre-
senting a class label. For instance, in WebKb4 dataset
“Class” attribute has the following set of values Class =
{course, faculty, project, staff, student}. We add these
four class labels as new terms (i.e., columns to our doc-
ument by term matrix). We call them “class terms”.
Each of these class terms indicates if the given docu-
ment belongs to a particular class or not.

After this transformation, we slightly modify the
higher-order data representation by characterizing a
set of D documents, their terms and class labels as
a tripartite graph. In this tripartite graph Ĝ =
((VW , VC , VD), E), vertices in VD correspond to doc-
uments, vertices in VW correspond to terms, and fi-
nally vertices in Vc correspond to class terms or in other
words class labels. Fig.2 shows a tripartite graph which
represents relationship between terms, class labels, and
documents. Similar to the previous higher-order data
representation with bipartite graph, a higher-order
path in dataset D can be considered as a chain sub-
graph of Ĝ. However, we are interested in such chain
sub-graphs which start with a term vertex from VW ,
span through different document vertices in VD, and
terminate with a class term vertex in VC . wi—ds—
wk—dr—cj is such a chain which we denote by (wi, ds,
wk, dr, cj). This chain corresponds to a second-order
path since it spans through two document vertices.
These paths have potential to cross class boundaries
and capture latent semantics. We enumerate higher-
order paths between all the terms in the training set
and the class terms. These higher-order paths capture
the term co-occurrences within a class of documents
as well as term relation patterns across classes. As a
result, they provide a more dense data representation
than the traditional vector space representation. This
makes the basis of our improved smoothing algorithm.

Let us consider w1—d1—w2—d2—c1 which is an
example chain in the tripartite graph given in Fig.2.

This chain is indicated with bold dotted lines and it
corresponds to a second-order path. In this example
let us assume that w1 never occurs in the documents
of c1. We still can estimate parameter value of w1 for
c1 using such paths. This is achieved by intermediate
terms such as wk that co-occurs with wi (given wk oc-
curs in the documents of cj). As can be seen from
the example, this new data representation and the new
definition of higher-order paths allow us to calculate
class conditional probabilities for some of the terms
that do not occur in the documents of a particular class.
This framework serves as a semantic smoothing method
for estimating model parameters of previously unseen
terms given the fact that higher-order paths reveal la-
tent semantics[11].

Fig.2. Data representation for higher-order paths using a tripar-

tite graph.

Based on this representation and modified definition
of higher-order paths we can formulate the HOS. Let
∂(wi, cj) denote the number of higher-order paths that
are between term wi and class label cj in the dataset
D, and Φ(D) denote the total number of higher-order
paths between all terms and the class term cj in D.
Please note that D represents all documents from all
classes. This is one of the important differences between
the formulation of HONB and HOS. The parameter es-
timation equation of the proposed HOS is given in (10).
Although HOS has the potential to estimate parame-
ters for terms that do not occur in the documents of a
class but occurs in other classes in training data, there
can be terms that occur only in test instances. In order
to avoid zero probability problems in these cases, we
apply Laplace smoothing in (10). Class priors are cal-
culated according to multivariate Bernoulli model using
documents.

P (wi|cj) =
1 + ∂(wi, cj)

2 + Φ(D)
. (10)
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We noticed that different orders of paths may have
different contribution to semantics and provide even
richer data representation. Similar to the linear inter-
polation (a.k.a. Jelinek-Mercer) we can combine esti-
mates calculated from different orders of paths. (11)
shows the linear combination of first-order paths (just
co-occurrences) with second-order paths. We use this
formulation in our experiments. We set β to 0.5 experi-
mentally since for majority of our datasets and training
set size percentages this value performs the best.

P (wi|cj) = (1−β)×Pfo(wi|cj)+β×Pso(wi|cj), (11)

where fo means fist-order and so means second-order.
The overall process of extracting second-order paths

for HOS is described in Algorithm 1. It is based on the
enumeration algorithm proposed in [6] and described in
more details in [8].

Algorithm 1. Enumerating Second-Order Paths for HOS

Input: Boolean document-term data matrix X = ||Xt
d||

Output: O2: matrix which stores the number of second-

order paths in data matrix X

1. Initialize vector l = (l1, . . . , ln), which will store class
labels of X

2. for each row i in data matrix X

li = ||Xt−1
i ||

3. Initialize class labels binary matrix Clb = ||Cc
lbd
|| which

will represent each class value as binary where c is the
number of classes in X

4. for each row i in Clb matrix

for each column c in Clb matrix

if li is equal to j

Set Clb equal to 1

5. Compute matrix Xclb = ||Xt+c
clbd

|| by appending binary
class valued matrix Clb to X

6. Compute first-order co-occurrence matrix O1 =
XT

clbXclb

7. Compute second-order co-occurrence matrix O2 =
O1O1

8. for each row i in first-order co-occurrence matrix O1

for each column j in first-order co-occurrence matrix

O1

Compute scalar s, to eliminate paths in the form of

t1, d1, t2, d1, t3, where both document vertices (d1)

are the same

s = O2(i, j)− (O1(i, j)× (O1(i, i) + O1(j, j)))

Update the element of second-order co-occurrence

matrix, O2(i, j) = O2(i, j) + s

10. Return O2

In the algorithm above, at first, class labels are re-
moved from the document by term data matrix and
stored in a vector. Following this a binary class labels
matrix is built. In the binary class labels matrix rows
represent class values of documents as binary vectors
where the index position of the class label is 1 and the
other positions 0. Afterwards, the binary class labels
matrix is combined with original data matrix X. This
results in a new matrix called class-binarized data ma-
trix (Xclb), which stores the input data matrix and
its binary class values. We use Xclb to calculate the
first and second order paths. The matrix which rep-
resents the co-occurrence relations of terms (first-order
paths) is calculated by multiplying transpose of Xclb

(term by document matrix) and Xclb (document by
term matrix). The second-order paths matrix is cal-
culated by multiplying first-order paths by itself. Al-
though this matrix includes the number of second-order
paths between terms (including binary class labels),
we are interested in certain type of paths according to
the path definition in [7]. This definition does not al-
low repeated terms or documents in the context of a
higher-order path in order to exploit latent relations
between different terms occurring in different docu-
ments. The scalar s represents the number of paths
like t1, d1, t2, d1, t3, where both document vertices (d1

in the example above) are the same. We filter these
types of paths by subtracting s from the total paths
between two terms.

5 Experimental Setup

In order to analyze the performance of our algorithm
for text classification, we use seven datasets including
several widely used benchmark datasets. The first one
is a variant of the 20 Newsgroups① dataset. It is called
20News-18828 and it has fewer documents than the
original 20 Newsgroup dataset since duplicate postings
are removed. Additionally posting headers are deleted
except “From” and “Subject”.

Our second dataset is the WebKB② dataset, which
includes web pages collected from computer science de-
partments of different universities. There are seven
categories, namely student, faculty, staff, course,
project, department and other. We use four-class ver-
sion of the WebKB dataset, which is used in [13]. This
dataset is named as WebKB4.

The third dataset is 1150Haber dataset which con-
sists of 1 150 news articles in five categories namely
economy, magazine, health, politics and sport collected
from Turkish online newspapers[30].

①http://people.csail.mit.edu/people/jrennie/20Newsgroups, Mar. 2014.
②http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/, Mar. 2014.
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In addition to these three major datasets we use
four additional datasets especially in normalization ex-
periments. Among these, Milliyet4c1k dataset includes
documents from the columns of a popular Turkish news-
paper called Milliyet③ from 2002 to 2011. It con-
tains four categories and 1 000 documents for each
category. The categories of this dataset are dünya
(world), ekonomi (economy), siyaset (politics), and spor
(sports).

Our next Turkish dataset is named as Hurriyet6c1k
and it includes news documents from 2010 to 2011
published in Hürriyet④ which is a mainstream Turkish
newspaper. It contains six categories and 1 000 docu-
ments for each category. Categories in this dataset are
dünya (world), ekonomi (economy), gündem (current),
spor (sports), siyaset (politics), and yaşam (life).

We use setimes-tr and setimes-en datasets collected
from SETimes⑤ website which publishes news about
Southeast Europe in English and several other lan-
guages including Turkish. It is important to note that
setimes-en and setimes-tr includes exactly the same
news content but in different languages. Therefore it
can be considered as an aligned corpus at document
level. This type of bi-lingual datasets allows us to ob-
serve performance of text classification algorithms on
the content written in different languages. This is im-
portant because even the basic data statistics in Table
1 and Table 2 illustrate interesting differences between
Turkish and English document sets, such as the vocab-
ulary sizes and average (Avg.) and standard deviation
(StdDev.) of term lengths.

Table 1. Descriptions of the Datasets

Without Preprocessing

Dataset |C| |D| |V |
20News-18828 20 18 828 50 570

WebKB4 4 4 199 16 116

1150Haber 5 1 150 11 038

Hurriyet6c1k 6 6 000 24 228

Milliyet4c1k 4 4 000 39 174

Setimes-tr 7 7 000 16 456

Setimes-en 7 7 000 10 373

We particularly choose datasets in different lan-
guages in order to observe efficiency of the higher-order
algorithms on different languages. Similar to LSI, we
expect higher-order paths based algorithms HONB and
HOS to perform well on a different language without
any need of tuning. More information about dataset

1150Haber and text classification on Turkish docu-
ments can be found in [31].

Table 2. Data Characteristics of the Datasets

Without Preprocessing

Dataset Number of Term Docu-

Terms in Documents Length ment

Avg. StdDev. Avg. StdDev. Sparsity

20News-18828 47.24 44.41 5.35 2.61 0.98

WebKB4 81.68 49.95 5.34 2.97 0.96

1150Haber 57.23 37.37 5.81 3.22 0.97

Hurriyet6c1k 50.47 27.41 5.78 3.20 0.97

Milliyet4c1k 137.82 42.80 5.74 3.14 0.93

Setimes-tr 65.86 36.88 5.93 3.29 0.97

Setimes-en 53.28 29.24 5.92 2.88 0.97

Hurriyet6c1k, Milliyet4c1k, setimes-tr, and setimes-
tr are compiled by our research group and can be ob-
tained for research purposes from our web site⑥.

We use a wide variety of datasets with different fea-
tures. One of the most important differences between
WebKB4 and other two datasets is the class distribu-
tion. While 20News-18828 and 1150Haber have almost
equal number of documents per class, WebKB4 has
highly skewed class distribution.

We employ commonly used preprocessing methods
such as stop word removal, stemming, and attribute
selection. We also filter infrequent terms whose docu-
ment frequency is less than three. However, statistics
given in Table 1 are acquired from the datasets before
applying stemming, stop word filtering, and attribute
selection in order to understand their nature especially
in terms of the vocabulary sizes. Descriptions of the
datasets, under these conditions are given in Table 1
including the number of classes (|C|), number of docu-
ments (|D|), and the vocabulary size (|V |).

As can be seen from Algorithm 1, the complexity
of the higher-order path enumeration algorithm is pro-
portional to the number of terms or in other words the
vocabulary size. In order to avoid unnecessary com-
plexity and to finish experiments on time we reduce
the dictionary size of all three datasets by applying
stop word filtering and stemming using Snowball stem-
mer. Stop word lists and Snowball stemmer have im-
plementations for both English and Turkish. Finally,
dictionary sizes are fixed to 2 000 by selecting the most
informative terms using information gain feature selec-
tion method. All of these preprocessing operations are
widely applied in the literature and they are known
to improve the performance of traditional vector space

③http://www.milliyet.com.tr, Mar. 2014.
④http://www.hurriyet.com.tr, Mar. 2014.
⑤http://www.setimes.com, Mar. 2014.
⑥http://dmrl.ce.dogus.edu.tr/datasets.html, Mar. 2014.
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classifiers. Please note that HOS is expected to work
well when the data is sparse and these preprocessing
operations reduce sparsity. For that reason, we are ac-
tually giving a considerable advantage to our baseline
classifiers (NB and SVM).

As mentioned before we vary the training set size by
using the following percentages of the data for training:
1%, 5%, 10%, 30%, 50%, 70%, and 90%, and the rest
for testing. These percentages are indicated with “TS”
to avoid confusion with accuracy percentages. We take
class distributions into consideration while doing so.

We run algorithms on 10 random splits for each of
the training set percentages and report average of these
10 results augmented by standard deviations. While
splitting data into training and test sets, we employ
stratified sampling. This approach is similar to [14]
and [32] where they use 80% of the data for training
and 20% for testing.

Our datasets include term frequencies (TF). How-
ever, higher-order paths based classifiers HONB and
HOS can intuitively work with binary data. This sim-
plifies the path counting since a binary term-by-term
matrix can be translated into an un-weighted and un-
directed graph. As a result, we form a binary version of
each dataset by converting term frequencies to binary
occurrence values in order to enumerate higher-order
paths. We do not consider word weighting schemas
such as TFIDF since our main focus is on binary data
as mentioned above.

We employ up to second-order paths based on the
experimental results of previous studies[6-7,11].

Since we use binary term occurrences, our baseline
classifier is multivariate Bernoulli NB (MVBN) with
Laplace smoothing. This is indicated as MVNB in
the results. We also employ more advanced smooth-
ing method with MVNB, which is called Jelinek-Mercer
(JM).

It is not easy to use HOS in a multinomial Naive
Bayes setting since it changes the nature of our tri-
partite graph structure which is undirected and un-
weighted. The choice of using the term frequencies
transforms it to a weighted graph. In this graph an
edge between a term and document is weighted by the
occurrence frequency of the term in that document.
Consequently, counting the number of paths that satis-
fies our path definition is not straightforward anymore.
Furthermore, it is not clear how to calculate weights
in higher-order path structure since a relation edge be-
tween two terms includes two different term frequency
values. Solving these challenges is out of the context of
this paper. Yet, we attempt to use HOS with Multi-
nomial Naive Bayes (MNB+HOS) on term frequency
data in a straightforward way by omitting the step 8

of Algorithm 1. This means that we are relaxing one
of the restrictions on path definition. These initial ex-
periments are intended for comparison purposes with
other algorithms such as SVM and MNB. Additionally,
we also apply several normalizations in order to see the
effect of them in its performance. For JM and HOS,
we fix β to 0.5 experimentally since for majority of our
datasets and training set size percentages this value per-
forms the best.

Furthermore, we compare our results with HONB
and the state-of-the-art text classifier SVM and LSI-
based k-Nearest Neighborhood algorithm (LSI k-NN)
using the similar approach in [7]. Similarly, the num-
ber of neighbors is set to 25 and the k parameter of LSI
is automatically optimized for each dataset and train-
ing set percentage by using the Kaiser approach. SVM,
which operates binary term occurrences datasets, is in-
dicated as “SVM binary” and the one that uses term
frequency data is simply indicated as “SVM” in the
results. “SVM binary” alias should not be confused
with concept of the binary SVM which performs a bi-
nary classification of two classes. Instead both “SVM
binary” and “SVM” are multiclass SVMs. We use lin-
ear kernel in SVM since it is known to perform well
in text classification. This is also consistent with the
results of our initial experiments. Additionally, we op-
timize soft margin cost parameter C by using the set of
{10−3, . . . , 1, 101, . . . , 103} of possible values. We pick
the smallest value of C, which results in the highest ac-
curacy. We observe that the best performing value for
C is usually 1 or 10−1 depending on the dataset when
the training data is small (e.g., up to 10%) and 10−2

when training data increases (e.g., after 10%).
Several studies emphasize the importance of dif-

ferent varieties of normalizations such as document-
length normalization in improving Naive Bayes perfo-
rmance[32-34]. Thus, we conduct several experiments to
analyze the performance of HOS by incorporating doc-
ument length and matrix level normalizations for the
first-order and second-order term matrices. The doc-
ument normalization is applied by dividing the term
frequencies to their maximum value in the document
vector.

We observe that the values in the second-order term
matrix are much larger than those in the first-order
term matrix. As a result, we apply min-max normali-
zation to each matrix.

6 Experimental Results

We use average accuracy values of 10 random trial
experiments with varying training set size percentages.
Accuracy is our main evaluation metric and it is aug-
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mented by standard deviations in the result tables be-
low. Additionally, we employ other commonly em-
ployed evaluation metrics in order to evaluate the ef-
fectiveness of HOS from a wider perspective. These
include F -measure (F1) and the area under the ROC
curve (AUC). However, we report these values only for
80% training data level due to the length restrictions.
Additionally, we observe that F1 and AUC values are
similar to the accuracy values.

There are several approaches in evaluating machine
learning algorithms[35]. In addition to the evaluation
metrics, we provide statistical significance tests in seve-
ral places by using student’s t-test. This is especially
useful when accuracy values of different algorithms are
close to each other. We use α = 0.05 significance level
and consider the difference is statistically significant if
the probability associated with student’s t-test is lower.

In the following result tables, if the accuracy val-
ues of HOS are higher than the values of our baselines
(MVNB and MVNB+JM), they are indicated with bold
font. Additionally, if the difference between the results
of HOS and our baselines are statistically significant ac-
cording to t-test, it is indicated by a dot (•) near by the
accuracy value. This is similar to the representation in
[36].

6.1 Binary Model Results

Our experiments show that HOS demonstrates re-
markable performance on 20 Newsgroups dataset. This
can be clearly seen in Table 3 showing the performance
of the algorithms in different training set size condi-
tions. HOS statistically significantly outperforms our
baseline classifier MVNB (with default Laplace smooth-
ing) by a wide margin in all training set percentages.
Moreover, HOS statistically significantly outperforms
all other algorithms including NB with Jelinek-Mercer
smoothing (MVNB+JM) and HONB. The performance
improvement is especially visible at low training set
size levels. It is important to note that 20 Newsgroups
dataset is one of the most commonly used datasets in
text mining domain.

Table 3. Accuracy and Standard Deviations of Algorithms on

20 Newsgroups Dataset with Varying Training Set Size

TS MVNB MVNB+JM MVNB+HOS HONB

1 24.77± 2.49• 48.01± 1.37 42.92± 3.61 44.09± 2.04

5 55.68± 1.26• 69.10± 0.68 65.81± 1.57 64.65± 0.92

10 65.01± 1.57• 72.95± 1.42• 76.70± 0.79 69.93± 0.62

30 72.83± 0.74• 75.66± 0.63• 81.97± 0.33 76.12± 0.38

50 75.11± 0.58• 76.64± 0.68• 83.06± 0.29 78.53± 0.37

70 75.65± 0.64• 76.81± 0.67• 83.33± 0.54 79.92± 0.34

90 76.21± 1.18• 76.50± 1.02• 83.26± 0.84 80.11± 0.65

Table 4 shows the performance of HOS on WebKB4
dataset. Although it is not as visible as 20 Newsgroups
dataset, HOS still outperforms our baseline MVNB
starting from 10% training set level. All these perfor-
mance improvements are statistically significant. Addi-
tionally, HOS statistically significantly outperforms the
MVNB+JM smoothing starting from 30% training set
level.

Table 4. Accuracy and Standard Deviations of Algorithms on

WebKB4 Dataset with Varying Training Set Size

TS MVNB MVNB+JM MVNB+HOS HONB

1 44.48± 1.03 69.96± 3.15 30.08± 6.56 70.58± 3.80

5 68.17± 2.49 79.33± 2.15 61.15± 6.51 77.68± 2.94

10 74.46± 1.36• 80.76± 1.54 77.71± 2.33 80.83± 1.35

30 81.53± 1.05• 83.02± 0.92• 85.24± 0.75 86.83± 0.58

50 82.57± 0.83• 82.81± 0.81• 86.08± 0.55 87.64± 0.75

70 83.53± 0.98• 83.19± 1.08• 87.01± 0.87 88.53± 0.75

90 84.17± 2.10• 83.41± 1.61• 87.01± 1.20 88.36± 1.42

Interestingly, HONB performs slightly well than
HOS on this dataset. We attribute the better perfor-
mance of HONB to the skewed class distribution of the
dataset. This is one of the main differences of the We-
bKB4 dataset from other datasets.

The performance of HOS on the 1150Haber dataset,
which can be seen in Table 5, is similar to its perfor-
mance on the 20 Newsgroups dataset. HOS statisti-
cally significantly outperforms the baseline algorithms:
starting from 10% training set level for MVNB and
starting from 30% level for MVNB+JM. HONB and
HOS show a very similar performance on this dataset
with the exception of small training set levels (i.e., up to
30%) where the HONB performs better. This may be
attributed to the much larger number of paths genera-
ted by HONB compared with HOS since 1150Haber is
our smallest dataset including 230 news documents per
class. After 30% level the differences between accura-
cies of HONB and HOS are not statistically significant.
It is interesting to observe similar behavior of HOS in
datasets with different properties in different languages.
For instance, 20 Newsgroups dataset contains highly
noisy and informal use of language in newsgroups pos-

Table 5. Accuracy and Standard Deviations of Algorithms on

1150Haber Dataset with Varying Training Set Size

TS MVNB MVNB+JM MVNB+HOS HONB

1 35.70± 7.64 48.40± 5.04 32.09± 11.1 30.32± 12.7

5 65.06± 12.6 81.01± 6.95 67.00± 11.9 88.25± 0.93

10 72.95± 3.83• 86.01± 2.03 83.13± 4.12 91.61± 0.85

30 87.64± 1.14• 91.49± 0.71• 93.79± 0.31 94.20± 0.59

50 88.73± 0.65• 91.10± 0.63• 94.42± 0.42 94.73± 0.57

70 89.97± 0.88• 91.39± 0.83 • 95.01± 0.85 95.30± 0.96

90 90.78± 2.73• 91.48± 2.42• 94.35± 2.14 95.22± 1.75
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tings in English. On the other hand 1150Haber includes
relatively more formal use of language in mainstream
newspaper column articles in Turkish.

Improvements are most visible in 20 Newsgroups
dataset. HOS improves upon MVNB and SVM about
17% in terms of accuracy at 10% training set size (TS)
level on the 20 Newsgroups dataset. We can observe im-
provements in all training set size levels on this dataset.

In addition to the detailed accuracy results on seve-
ral different training set levels, we present the results
of additional evaluation metrics at the 80% training set
level. We choose this training set level since it is com-
monly used in random trial experiments[14,32].

Table 6 shows F -measure (F1) performance of the
algorithms at 80% training set level. The similar
trend of outperforming the baseline algorithms can also
be seen in here. HOS statistically significantly out-
performs both of the baseline classifiers (MVNB and
MVNB+HOS) for all datasets. The performance im-
provements are especially visible on 20 Newsgroups and
1150Haber datasets.

Table 6. F -Measure Performance of the Algorithms at

80% Training Set Level

Algorithm 20 News-18828 WebKB4 1150Haber

HONB 79.96± 0.75 88.34± 0.97 95.92± 1.60

MVNB+HOS 83.02± 0.72 85.32± 1.74 94.95± 1.84

MVNB 76.41± 0.59• 82.80± 1.23• 89.79± 2.40•
MVNB+JM 77.39± 0.81• 82.43± 1.31• 90.96± 2.50•
SVM Binary 78.81± 0.81• 91.28± 1.28 92.06± 2.72•

Table 7 presents AUC values of the algorithms in this
training set percentage level. Again, HOS outperforms
baseline MVNB for all the datasets. One interesting
observation from this table is the results of algorithms
on WebKB4 dataset. Although SVM is by far the best
performing algorithm in this dataset in terms of ac-
curacy, it has been outperformed by HOS in terms of
AUC.

Table 7. AUC Performance of the Algorithms at

80% Training Set Level

Algorithm 20 News-18828 WebKB4 1150Haber

HONB 98.18± 0.07 97.58± 0.27 99.57± 0.24

MVNB+HOS 98.57± 0.09 96.90± 0.46 99.56± 0.25

MVNB 97.67± 0.17• 96.17± 0.51• 99.25± 0.38

MVNB+JM 97.74± 0.19• 96.19± 0.54• 99.43± 0.31

SVM Binary 88.69± 0.38• 94.35± 0.67• 95.03± 1.70•

Fig.3 compares MVNB+HOS with two state-of-the-
art classifiers: SVM and LSI k-NN. As we can see from
the figure MVNB+HOS outperforms both SVM and
LSI k-NN by a wide margin on 1150Haber binary term
occurrence dataset. Due to the extremely high com-
plexity of LSI k-NN algorithm we could obtain results

from the training set percentage level 1% to 90% only
for 1150Haber dataset. We conduct experiments for
other datasets up to a certain TS level (e.g. up to ts50
for WebKB4, milliyet4k1c, hurriyet6k1c, and up to ts10
for 20 Newsgroups, setimes-tr and setimes-en). How-
ever, these results are consistent with the 1150Haber
results showing that MVNB+HOS perform better than
LSI k-NN in general.

Fig.3. Accuracy comparison of MVNB+HOS, LSI k-NN and

SVM algorithms on 1150Haber binary dataset.

6.2 Normalization Experiments on
Multinomial and Binary Models

In this subsection we report the results of a multi-
nomial version of HOS which uses the term frequencies
in a multinomial Naive Bayes setting. These results are
presented in Tables 8∼21. We use multinomial data to
advance the current higher-order learning framework,
which works on binary data, so it can make use of term
frequencies. Multinomial models of HOS at this very
basic level show promises on small training set percent-
ages. However, it requires more work to establish a
better framework.

Additionally we provide the results for several nor-
malization approaches for both multivariate binary
(MVNB+HOS) and multinomial models (MNB+HOS).

Several studies emphasize the importance of dif-
ferent varieties of normalizations such as document-
length normalization in improving the performance of
NB[32-34]. Thus, we conduct several experiments to an-
alyze HOS by incorporating document length normal-
ization and matrix level normalizations for first-order
and second-order term matrices.

In Table 8, Table 10, and Table 12 we can see the
results of the normalization for the multivariate binary
HOS (MVNB+HOS) and compare it with the SVM al-
gorithm which is applied to the binary word occurrence
data. In Table 8, Table 9, and Table 12 for MNB+HOS
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Table 8. Accuracy and Standard Deviations of Algorithms on

20News-18828 Binary Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(2) SVM Binary

1 17.02± 4.96 36.47± 5.11 39.02± 1.79

5 65.81± 1.57 61.34± 2.16 58.32± 1.19•
10 76.70± 0.79 65.03± 2.72 66.76± 0.81•
30 81.97± 0.33 68.53± 1.56 74.24± 0.72•
50 83.06± 0.29 69.98± 0.86 77.31± 0.70•
70 83.33± 0.54 70.47± 0.56 79.98± 0.45•
90 83.26± 0.84 70.72± 0.68 81.35± 1.17•

Table 9. Accuracy and Standard Deviations of Algorithms

on 20News-18828 TF Dataset with Varying Training Set Size

TS MNB+HOS(1) MNB+HOs(3) SVM

1 54.33± 1.41 56.59± 1.43 32.65± 1.75

5 73.15± 0.75 74.05± 0.55 56.16± 1.11

10 76.92± 0.90 77.45± 0.31 65.15± 0.61

30 80.17± 0.51 79.47± 0.29 75.99± 0.61

50 81.11± 0.34 80.09± 0.20 79.35± 0.34

70 81.57± 0.40 80.28± 0.41 81.53± 0.32

90 81.45± 0.81 80.63± 0.92 82.38± 1.15

Table 10. Accuracy and Standard Deviations of Algorithms

on WebKB4 Binary Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(2) SVM Binary

1 27.04± 12.28 59.84± 9.26 68.42± 3.17•
5 61.15± 6.51 75.66± 2.17 81.59± 2.35•

10 77.71± 1.33 80.10± 1.61 84.54± 1.33•
30 85.24± 0.75 81.11± 1.22 89.38± 1.03•
50 86.08± 0.55 81.08± 0.67 90.41± 0.63•
70 87.01± 0.87 82.07± 0.94 91.62± 0.83•
90 87.01± 1.20 81.25± 1.73 92.08± 1.01•

Table 11. Accuracy and Standard Deviations of Algorithms

on WebKB4 TF Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(3) SVM

1 69.54± 2.86 66.36± 3.63 60.57± 1.82

5 76.52± 5.00 79.89± 0.82 79.01± 1.33

10 78.04± 5.17 82.53± 1.18 83.48± 1.14

30 83.04± 2.35 84.37± 0.70 89.43± 0.55

50 82.84± 1.07 84.05± 0.69 91.04± 0.47

70 83.45± 0.98 84.28± 0.97 91.69± 0.72

90 83.45± 1.62 83.95± 1.57 92.20± 1.00

Table 12. Accuracy and Standard Deviations of Algorithms

on 1150Haber Binary Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(2) SVM Binary

1 26.97± 8.26 41.49± 10.66 54.04± 4.93

5 49.26± 24.16 87.26± 3.18 80.73± 2.56•
10 61.60± 11.80 92.41± 0.59 85.36± 1.02•
30 92.99± 0.49 94.59± 0.43 90.36± 1.37•
50 94.26± 0.70 94.92± 0.75 90.85± 0.88•
70 95.01± 0.85 95.10± 0.89 92.17± 1.22•
90 94.34± 2.13 94.26± 2.05 91.91± 1.92•

or MVNB+HOS we can see that the performance of
HOS can exceed the performance of SVM. The perfor-
mance improvement is visible starting from 5% training
set level for both 20 News-18828 and 1150Haber, which
can be seen in Table 8 and Table 12 respectively. It
is important to note that the c parameter of SVM is
optimized in these results.

For our additional datasets of Hurriyet6c1k, Mil-
liyet4c1k, setimes-tr, and setimes-en, we observe
slightly different patterns for SVM. MVNB+HOS usu-
ally outperforms SVM on small training set levels.

In this subsection, HOS(1) indicates no normaliza-
tion, HOS(2) shows term matrix level normalization,
and HOS(3) indicates both term matrix and document
normalizations.

In general, term matrix normalizations that are in-
dicated with HOS(2) do not improve the performance of
MVNB+HOS as we can see in Table 8, Table 10, Table
12, Table 14, Table 16, Table 18, and Table 20. They

Table 13. Accuracy and Standard Deviations of

Algorithms with Multinomial Model on

1150Haber Dataset with Varying Training Set Size

TS MNB+HOS(1) MNB+HOS(3) SVM

1 59.35± 4.99 54.21± 3.33 38.92± 3.03

5 88.58± 1.08 89.40± 1.22 67.47± 4.24

10 92.17± 0.40 92.65± 0.35 76.27± 2.71

30 94.24± 0.48 94.32± 0.58 87.39± 1.21

50 94.55± 0.86 94.46± 0.97 89.55± 1.12

70 94.98± 1.06 95.21± 1.12 90.55± 1.49

90 94.52± 2.46 94.17± 2.78 90.78± 1.93

Table 14. Accuracy and Standard Deviations of

Algorithms with Binary Model on

Hurriyet6c1k Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(2) SVM Binary

1 39.08± 11.83 60.13± 1.63 52.73± 1.49•
5 70.74± 1.12 72.03± 0.57 64.56± 1.35•

10 74.28± 0.68 74.64± 0.70 68.84± 0.47•
30 76.20± 0.36 76.11± 0.37 73.85± 0.77•
50 76.86± 0.46 76.48± 0.49 75.60± 0.56

70 76.70± 0.59 76.36± 0.47 76.67± 0.60

90 77.25± 1.72 76.86± 1.69 77.56± 2.10

Table 15. Accuracy and Standard Deviations of

Algorithms with Multinomial Model on

Hurriyet6c1k Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(3) SVM

1 58.45± 1.72 60.18± 1.76 40.47± 6.22

5 70.71± 0.81 71.27± 0.48 60.63± 2.25

10 73.57± 0.51 73.96± 0.68 66.30± 0.94

30 75.82± 0.50 75.66± 0.38 73.05± 0.53

50 76.46± 0.70 76.19± 0.77 75.34± 0.53

70 76.38± 0.60 75.86± 0.61 76.43± 0.63

90 77.01± 1.78 75.86± 1.89 77.96± 1.48
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Table 16. Accuracy and Standard Deviations of Algorithms

on Binary Milliyet4c1k Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(2) SVM Binary

1 68.43± 7.48 82.34± 1.14 76.01± 3.13•
5 86.48± 0.51 86.95± 0.37 83.93± 1.06•

10 87.55± 0.45 87.65± 0.47 85.51± 0.76

30 87.92± 0.33 87.77± 0.40 88.76± 1.00

50 88.11± 0.69 87.95± 0.72 90.04± 0.74

70 88.03± 0.70 87.81± 0.79 90.55± 1.05

90 87.47± 1.55 87.37± 1.51 90.70± 0.90

Table 17. Accuracy and Standard Deviations of

Algorithms with Multinomial Model on

Milliyet4c1k Dataset with Varying Training Set Size

TS MNB+HOS(1) MNB+HOS(3) SVM

1 80.40± 2.10 81.21± 1.26 72.76± 3.35

5 85.61± 0.53 85.99± 0.55 84.05± 0.71

10 86.77± 0.47 86.86± 0.46 87.12± 0.65

30 87.11± 0.44 86.97± 0.51 90.60± 0.47

50 87.27± 0.50 87.16± 0.57 92.06± 0.38

70 87.13± 0.87 86.95± 0.84 92.14± 0.67

90 86.52± 1.62 86.45± 1.66 93.45± 1.01

Table 18. Accuracy and Standard Deviations of Algorithms

on Binary Setimes-Tr Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(2) SVM Binary

1 24.03± 6.92 38.92± 2.28 38.32± 1.34•
5 48.02± 1.23 50.01± 0.91 49.98± 1.20

10 51.42± 0.49 51.87± 0.40 53.80± 0.43

30 54.01± 0.34 53.72± 0.44 56.90± 0.48

50 54.08± 0.62 53.73± 0.56 57.31± 0.45

70 54.00± 0.84 53.61± 0.81 57.55± 0.65

90 54.84± 2.32 54.31± 2.09 57.87± 1.85

Table 19. Accuracy and Standard Deviations of

Algorithms with Multinomial Model on

Setimes-Tr Dataset with Varying Training Set Size

TS MNB+HOS(1) MNB+HOS(3) SVM

1 40.82± 1.85 40.55± 2.12 36.41± 1.66

5 50.62± 1.03 50.47± 1.03 48.96± 1.29

10 52.19± 0.56 52.28± 0.51 53.04± 0.32

30 54.24± 0.43 53.88± 0.43 55.60± 0.55

50 54.16± 0.49 53.58± 0.46 55.73± 0.52

70 54.28± 0.66 53.87± 0.79 55.61± 0.93

90 55.50± 2.31 54.22± 2.17 56.55± 1.36

only increases the performance at very low training set
percentage levels such as 1% to 10% but degrade the
performance above these levels.

However, the picture is quite different in terms of
the normalizations applied to the multinomial HOS
(MNB+HOS). In general, MNB+HOS performs bet-
ter when matrix normalization and document normali-
zation are applied together (MNB+HOS(3)). This is
especially the case for smaller training set percentages.

Table 20. Accuracy and Standard Deviations of Algorithms

on Binary Setimes-En Dataset with Varying Training Set Size

TS MVNB+HOS(1) MVNB+HOS(2) SVM Binary

1 26.56± 3.26 38.85± 1.48 39.20± 1.91

5 48.04± 1.32 49.44± 1.25 51.35± 0.90

10 51.05± 0.76 51.36± 0.74 54.63± 0.56

30 53.78± 0.59 53.33± 0.61 57.67± 0.53

50 53.97± 0.51 53.19± 0.51 58.42± 0.73•
70 54.03± 1.00 52.95± 0.92 58.44± 0.50•
90 54.38± 2.30 53.60± 2.17 58.80± 1.62•

Interestingly, if matrix normalization is applied alone, it
can seriously degrade the performance of MNB+HOS.
Therefore we omit the results of MNB+HOS(2), term
matrix level normalization from result tables.

In terms of comparison between MNB+HOS and
SVM on term frequency data, we observe a similar
pattern to MVNB+HOS and SVM on binary term
occurrence data. For 20News-18828 and 1150Haber
MNB+HOS outperforms SVM by a wide margin espe-
cially in small training set percentages as can be seen in
Table 9 and Table 13. A similar performance difference
in small training set percentages can be seen in Table 15
for Hurriyet6c1k dataset. However, we observe an op-
posite pattern in WebKB4, setimes, and Milliyet4c1k
datasets in Table 11, Table 17, Table 19, and Table
21. In these datasets SVM performs better than Naive
Bayes models.

Table 21. Accuracy and Standard Deviations of Algorithms

on Setimes-En TF Dataset with Varying Training Set Size

TS MNB+HOS(1) MNB+HOS(3) SVM

1 40.36± 1.06 40.67± 1.05 37.61± 2.34

5 50.54± 1.36 50.38± 1.17 50.52± 1.24

10 52.55± 0.77 52.25± 0.46 53.91± 0.64

30 54.65± 0.37 53.45± 0.46 56.97± 0.38

50 54.72± 0.58 53.76± 0.57 57.14± 0.58

70 54.62± 0.69 53.48± 0.81 57.40± 0.51

90 55.47± 2.62 54.71± 2.04 57.61± 1.90

Interestingly, the performance of SVM that operates
on binary data (indicated as “SVM binary”) is very
close to the performance of SVM that operates on term
frequency data.

As mentioned before, we optimize the parameters of
SVM. Interestingly, we have varying results for the best
c value. It is hard to draw a general conclusion for the
best c value. The c value which yields best accuracies
drastically changes from dataset to dataset and even
for training set percentages. Furthermore, using binary
term occurrence data or term frequency data changes
the best c value.

On the 1150Haber dataset, the best results are ob-
tained with MVNB+HOS(2) at small training size levels
up to 50% as can be seen from Table 12. Furthermore,
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the SVM on binary data exceeds the SVM on term fre-
quency data at almost at every training set size level.

The normalizations applied to MNB+HOS does very
little or no effect on the performance in setimes-en,
setimes-tr, Milliyet4c1k experiments. In general, nor-
malization methods on MNB+HOS do make a very lit-
tle difference (about 1% or 2%) on small training set
percentages such as 1%, 5%, and 10%.

In addition to these results, we also compare our
method with an LSI-based classification algorithm on
a term frequency dataset. In Fig.4 we can see that
MNB+HOS outperforms both SVM and LSI k-NN by
a wide margin on 1150Haber term frequency dataset.

Fig.4. Accuracy comparison of MNB+HOS, LSI k-NN and SVM

algorithms on 1150Haber term frequency dataset.

7 Discussion

The use of higher-order paths for estimation of con-
ditional term probabilities have been discussed in [7-8].
It is observed that highly discriminative terms exhibit
much stronger influence on classification by HONB than
by NB[8]. Additionally, HONB tends to place more em-
phasis on the presence of terms in a document being
classified[7-8]. Since HOS is based on the higher-order
paths, it enjoys some of these benefits. However, in
HOS we are enumerating much fewer higher-order paths
because paths need to end with a class label. Therefore,
we have less data to extract patterns from. As a result,
HONB provides a higher performance on small training
set levels (i.e., 1% and 5%) compared with HOS. Yet,
HOS quickly catches up about at 10% level and outper-
forms HONB especially on the 20News-18828 dataset.
This particular dataset has a relatively large number
of classes (having 20 classes compared with six classes
in WebKB4, and five classes in 1150Haber). With 20
class labels, we can extract much stronger patterns from
higher-order paths using HOS since the higher-order
paths must end with a class label. It would be interest-

ing to observe the performance of HOS on real world
datasets with much larger number of categories.

Results on 1150Haber, Hurriyet6c1k, Milliyet4c1k,
and setimes-tr datasets suggest that HOS may also per-
form well on different languages than English without
additional language specific tuning. This is similar to
LSI. This can be an important advantage for HOS com-
pared with the natural language processing based se-
mantic methods such as [21].

In terms of training time complexity, an O(n2(m +
n)) algorithm is given in previous studies for obtain-
ing amounts of higher-order paths in a dataset with m
instances and n dimensions[6,8]. In the training phase,
HONB forms a document by term matrix (m × n) for
each class, and uses this algorithm to obtain amounts
of higher-order paths between all terms.

Our approach, which is given in Algorithm 1, sug-
gests using the same principles; therefore, it has simi-
lar computational complexity. When we examine Algo-
rithm 1 more closely, the computational complexity is
dominated by computation matrices O1 and O2, there-
fore the complexity is O(mn2 + n3).

However, given the fact that we base our computa-
tions on a single document by term matrix and we use
only the paths ending with class labels, we are enumer-
ating much fewer paths. So in practice, HOS runs faster
than HONB and both HOS and HONB share the low
classification time complexity of Naive Bayes.

Extensive experiments demonstrate that normaliza-
tion methods can increase the performance of HOS
especially on binary data (MVNB+HOS). In general,
matrix normalizations can improve the performance of
MVNB+HOS on small training set percentages. On the
other hand, multinomial model shows similar pattern
almost on every dataset. It is either no normalization
or the combination of matrix and document normaliza-
tion leads to the best results of MNB+HOS.

In order to understand the reasons for the better per-
formance of HOS over its baseline, we find some corre-
lations between the average number of distinct words in
documents and document sparsity measured using the
number of zeroes in document vector of document by
term matrix. We speculate that HOS and other algo-
rithms of higher-order learning framework work better
when both the average number of terms in documents
are around 50 to 80 and average document sparsity is
relatively high (95%∼97%). In addition to these, we
argue that the relatively high number of classes in a
large dataset such as 20News-18828 dataset boost the
performance of HOS.

It is also interesting to observe in our results that on
several datasets the algorithms working on binary term
occurrence data can indeed outperform algorithms ope-
rating on term frequency data in several cases. This is
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similar to the findings of [16-17]. For instance, SVM
working on binary data can exceed the performance
of the SVM that is working on the same dataset but
with term frequencies. This phenomenon can be seen in
the WebKB4, setimes-en, setimes-tr, Hurriyet6c1k, and
1150Haber datasets. The difference is more visible in
the Turkish datasets and higher training set levels. On
the contrary, MNB almost always demonstrates better
performance than MVNB. It is important to note that
this is not the case for MVNB+HOS. MVNB+HOS can
exceed the performance of MNB and MNB+HOS in
several cases.

There are several studies on text mining and infor-
mation retrieval that employ term weightings. For in-
stance, the authors of [37] experimented with different
term weighting functions in the context of LSA per-
formance. It would be interesting to apply weighting
methods in HOS and analyze their influence as future
work.

8 Conclusions

It has been shown that LSI takes advantage
of implicit higher-order (or latent) structure in
the association of terms and documents. Higher-
order co-occurrence relations in LSI capture “latent
semantics”[11]. Motivated by this, a novel Bayesian
framework for classification named Higher-Order Naive
Bayes (HONB) was introduced in [7]. HONB can ex-
plicitly make use of these higher-order co-occurrence
relations.

In this study, we presented a novel semantic smooth-
ing method named Higher-Order Smoothing (HOS) for
the Naive Bayes algorithm. HOS is built on a novel
graph-based data representation, which allows us to ex-
ploit semantic information in higher-order paths. This
representation allows HOS to exploit relationships be-
tween instances of different classes in order to improve
the parameter estimation. As a result, we move beyond
not only instance boundaries but also class boundaries
to exploit the latent information in higher-order co-
occurrence paths during training.

We performed extensive experiments on seve-
ral benchmark textual datasets and compared
MVNB+HOS with several different state-of-the-art
classifiers. MVNB+HOS significantly outperforms
the baseline classifier of Naive Bayes using different
smoothing methods including Laplace smoothing and
Jelinek-Mercer smoothing, in all datasets under differ-
ent training data conditions. When we compared HOS
with a similar semantic classifier of LSI k-NN which is
based on LSI, we could see that HOS outperforms LSI
k-NN by a wide margin in 1150Haber dataset. Fur-
thermore, it even outperforms SVM by a wide margin

in the well-known 20Newsgroup, 1150Haber, and Hur-
riyet6c1k datasets. Our results demonstrate the value
of HOS as a semantic smoothing algorithm.
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